Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(12): 4222-4237, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38516079

ABSTRACT

Organic room-temperature phosphorescence (RTP) materials have attracted considerable attention for their extended afterglow at ambient conditions, eco-friendliness, and wide-ranging applications in bio-imaging, data storage, security inks, and emergency illumination. Significant advancements have been achieved in recent years in developing highly efficient RTP materials by manipulating the intermolecular interactions. In this perspective, we have summarized recent advances in ion-regulated organic RTP materials based on the roles and interactions of ions, including the ion-π interactions, electrostatic interactions, and coordinate interactions. Subsequently, the current challenges and prospects of utilizing ionic interactions for inducing and modulating the phosphorescent properties are presented. It is anticipated that this perspective will provide basic guidelines for fabricating novel ionic RTP materials and further extend their application potential.

2.
Adv Sci (Weinh) ; 10(19): e2300880, 2023 07.
Article in English | MEDLINE | ID: mdl-37408520

ABSTRACT

Preventing islet ß-cells death is crucial for treating type 2 diabetes mellitus (T2DM). Currently, clinical drugs are being developed to improve the quality of T2DM care and self-care, but drugs focused on reducing islets ß-cell death are lacking. Given that ß-cell death in T2DM is dominated ultimately by excessive reactive oxygen species (ROS), eliminating excessive ROS in ß-cells is a highly promising therapeutic strategy. Nevertheless, no antioxidants have been approved for T2DM therapy because most of them cannot meet the long-term and stable elimination of ROS in ß-cells without eliciting toxic side-effects. Here, it is proposed to restore the endogenous antioxidant capacity of ß-cells to efficiently prevent ß-cell death using selenium nanodots (SENDs), a prodrug of the antioxidant enzyme glutathione peroxidase 1 (GPX1). SENDs not only scavenge ROS effectively, but also "send" selenium precisely to ß-cells with ROS response to greatly enhance the antioxidant capacity of ß-cells by increasing GPX1 expression. Therefore, SENDs greatly rescue ß-cells by restoring mitophagy and alleviating endoplasmic reticulum stress (ERS), and demonstrate much stronger efficacy than the first-line drug metformin for T2DM treatment. Overall, this strategy highlights the great clinical application prospects of SENDs, offering a paradigm for an antioxidant enzyme prodrug for T2DM treatment.


Subject(s)
Diabetes Mellitus, Type 2 , Prodrugs , Selenium , Humans , Antioxidants/pharmacology , Selenium/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Reactive Oxygen Species/metabolism , Mitophagy , Oxidative Stress , Glutathione Peroxidase GPX1 , Endoplasmic Reticulum Stress
3.
Adv Mater ; 35(36): e2301585, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37224059

ABSTRACT

Non-invasive localization of lesions and specific targeted therapy are still the main challenges for inflammatory bowel disease (IBD). Ta, as a medical metal element, has been widely used in the treatment of different diseases because of its excellent physicochemical properties but is still far from being explored in IBD. Here, Ta2 C modified with chondroitin sulfate (CS) (TACS) is evaluated as a highly targeted therapy nanomedicine for IBD. Specifically, TACS is modified with dual targeting CS functions due to IBD lesion-specific positive charges and high expression of CD44 receptors. Thanks to the acid stability, sensitive CT imaging function, and strong reactive oxygen species (ROS) elimination ability, oral TACS can accurately locate and delineate IBD lesions through non-invasive CT imaging, and specifically targeted treat IBD effectively because high levels of ROS are a central factor in the progression of IBD. As expected, TACS has much better imaging and therapeutic effects than clinical CT contrast agent and first-line drug 5-aminosalicylic acid, respectively. The mechanism of TACS treatment mainly involves protection of mitochondria, elimination of oxidative stress, inhibiting macrophage M1 polarization, protection of intestinal barrier, and restoration of intestinal flora balance. Collectively, this work provides unprecedented opportunities for oral nanomedicines to targeted therapy of IBD.


Subject(s)
Chondroitin Sulfates , Inflammatory Bowel Diseases , Humans , Chondroitin Sulfates/therapeutic use , Reactive Oxygen Species/metabolism , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Intestines , Oxidative Stress
4.
Small ; 19(19): e2207350, 2023 05.
Article in English | MEDLINE | ID: mdl-36760016

ABSTRACT

Oral antioxidant nanozymes bring great promise for inflammatory bowel disease (IBD) treatment. To efficiently eliminate reactive oxygen species (ROS), various metal-based nanozymes have been developed for the treatment of IBD but their practical applications are seriously impaired by unstable ROS-eliminating properties and potential metal ion leakage in the digestive tract. Here, the authors for the first time propose metal-free melanin nanozymes (MeNPs) with excellent gastrointestinal stability and biocompatibility as a favorable therapy strategy for IBD. Moreover, MeNPs have extremely excellent natural and long-lasting characteristics of targeting IBD lesions. In view of the dominant role of ROS in IBD, the authors further reveal that oral administration of MeNPs can greatly alleviate the six major pathological features of IBD: oxidative stress, endoplasmic reticulum stress, apoptosis, inflammation, gut barrier disruption, and gut dysbiosis. Overall, this strategy highlights the great clinical application prospects of metal-free MeNPs via harnessing ROS scavenging at IBD lesions, offering a paradigm for antioxidant nanozyme in IBD or other inflammatory diseases.


Subject(s)
Antioxidants , Inflammatory Bowel Diseases , Humans , Antioxidants/therapeutic use , Melanins , Reactive Oxygen Species , Inflammatory Bowel Diseases/drug therapy , Inflammation/drug therapy
5.
RSC Adv ; 13(7): 4803-4822, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36760269

ABSTRACT

As highly efficient conversion devices, proton-exchange-membrane fuel cells (PEMFCs) can directly convert chemical energy to electrical energy with high efficiencies and lower or even zero emissions compared to combustion engines. However, the practical applications of PEMFCs have been seriously hindered by the intermediates (especially CO) poisoning of anodic Pt catalysts. Hence, how to improve the CO tolerance of the needed Pt catalysts and reveal their anti-CO poisoning mechanism are the key points to developing novel anti-toxic Pt-based electrocatalysts. To date, two main strategies have received increasing attention in improving the CO tolerance of Pt-based electrocatalysts, including alloying Pt with a second element and fabricating composites with geometry and interface engineering. Herein, we will first discuss the latest developments of Pt-based alloys and their anti-CO poisoning mechanism. Subsequently, a detailed description of Pt-based composites with enhanced CO tolerance by utilizing the synergistic effect between Pt and carriers is introduced. Finally, a brief perspective and new insights on the design of Pt-based electrocatalysts to inhibit CO poisoning in PEMFCs are also presented.

6.
Adv Sci (Weinh) ; 10(2): e2204365, 2023 01.
Article in English | MEDLINE | ID: mdl-36437106

ABSTRACT

Cancer immunotherapy effect can be greatly enhanced by other methods to induce immunogenic cell death (ICD), which has profoundly affected immunotherapy as a highly efficient paradigm. However, these treatments have significant limitations, either by causing damage of the immune system or limited to superficial tumors. Sonodynamic therapy (SDT) can induce ICD to promote immunotherapy without affecting the immune system because of its excellent spatiotemporal selectivity and low side effects. Nevertheless, SDT is still limited by low reactive oxygen species yield and the complex tumor microenvironment. Recently, some emerging SDT-based nanomedicines have made numerous attractive and encouraging achievements in the field of cancer immunotherapy due to high immunotherapeutic efficiency. However, this cross-cutting field of research is still far from being widely explored due to huge professional barriers. Herein, the characteristics of the tumor immune microenvironment and the mechanisms of ICD are firstly systematically summarized. Subsequently, the therapeutic mechanism of SDT is fully summarized, and the advantages and limitations of SDT are discussed. The representative advances of SDT-based nanomedicines for cancer immunotherapy are further highlighted. Finally, the application prospects and challenges of SDT-based immunotherapy in future clinical translation are discussed.


Subject(s)
Neoplasms , Ultrasonic Therapy , Humans , Nanomedicine , Neoplasms/drug therapy , Immunotherapy , Reactive Oxygen Species/metabolism , Tumor Microenvironment
7.
Biosens Bioelectron ; 218: 114758, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36201998

ABSTRACT

Liver models are vital for the liver diseases and drug research as many novel drugs. However, traditional liver models cannot meet this need, mainly because they cannot replicate the complex physiological structure and microenvironment of the liver, especially the O2 and nutrient gradients. Liver-on-a-chip (LOC), based on microfluidic technology, can not only closely simulate the physiological structure and microenvironment of the liver through the design of suitable microchannels, but can also incorporate advanced biosensors with high sensitivity and potential for rapid responses to microenvironmental signals and liver function indicators. Nevertheless, LOCs have not been widely exploited for liver disease research or the screening of drugs for hepatotoxicity because of considerable professional barriers. In this review, we comprehensively summarize recent progress in LOC development and the embedding of biosensors into LOCs. We first introduce the physiological characteristics and microenvironment of the liver and then summarize the fabrication process and advantages of LOCs. We subsequently focus on recent advances relating to three-dimensional (3D) hepatocyte organization and the simulation of hepatic sinusoids and lobules in LOCs and further systematically summarize the research progress in biosensor-integrated LOCs. Finally, we discuss the potential value of LOCs and the challenges facing their exploitation. In conclusion, this review provides insights into the design and development of biosensor-integrated LOCs aiming to promote further research into this promising platform.


Subject(s)
Biosensing Techniques , Microfluidic Analytical Techniques , Biosensing Techniques/methods , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/methods , Microfluidics , Liver
8.
Org Biomol Chem ; 20(39): 7770-7775, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36165885

ABSTRACT

Two novel 2,7-naphthyridine derivatives are unexpectedly synthesized by the reaction of 2-(3,5-diaryl-4H-pyran-4-ylidene)malononitrile and benzylamine, and are achieved through different ring-closing mechanisms. These two derivatives with twisted molecular conformations display phosphorescence, thermally activated delayed fluorescence, and high contrast solid-state acidochromism due to special chemical structures.


Subject(s)
Nitriles , Pyrans , Benzylamines , Naphthyridines , Nitriles/chemistry , Pyrans/chemistry
9.
Adv Sci (Weinh) ; 9(28): e2202797, 2022 10.
Article in English | MEDLINE | ID: mdl-35869032

ABSTRACT

Immunotherapy has revolutionized cancer treatment, dramatically improving survival rates of melanoma and lung cancer patients. Nevertheless, immunotherapy is almost ineffective against ovarian cancer (OC) due to its cold tumor immune microenvironment (TIM). Many traditional medications aimed at remodeling TIM are often associated with severe systemic toxicity, require frequent dosing, and show only modest clinical efficacy. In recent years, emerging nanomedicines have demonstrated extraordinary immunotherapeutic effects for OC by reversing the TIM because the physical and biochemical features of nanomedicines can all be harnessed to obtain optimal and expected tissue distribution and cellular uptake. However, nanomedicines are far from being widely explored in the field of OC immunotherapy due to the lack of appreciation for the professional barriers of nanomedicine and pathology, limiting the horizons of biomedical researchers and materials scientists. Herein, a typical cold tumor-OC is adopted as a paradigm to introduce the classification of TIM, the TIM characteristics of OC, and the advantages of nanomedicines for immunotherapy. Subsequently, current nanomedicines are comprehensively summarized through five general strategies to substantially enhance the efficacy of immunotherapy by heating the cold OC. Finally, the challenges and perspectives of this expanding field for improved development of clinical applications are also discussed.


Subject(s)
Nanomedicine , Ovarian Neoplasms , Carcinoma, Ovarian Epithelial , Female , Heating , Humans , Immunologic Factors , Immunotherapy , Ovarian Neoplasms/therapy , Tumor Microenvironment
10.
Front Pharmacol ; 13: 949001, 2022.
Article in English | MEDLINE | ID: mdl-35903337

ABSTRACT

Cancer is one of the leading causes of death worldwide due to high morbidity and mortality. Many attempts and efforts have been devoted to fighting cancer. Owing to the significant role of the endoplasmic reticulum (ER) in cell function, inducing ER stress can be promising for cancer treatment. However, the sustained activation of cytoprotective unfolded protein response (UPR) presents a tremendous obstacle for drugs in inducing unsolved ER stress in tumor cells, especially small-molecule drugs with poor bioavailability. Therefore, many emerging nanodrugs inducing and amplifying ER stress have been developed for efficient cancer treatment. More importantly, the novel discovery of ER stress in immunogenic cell death (ICD) makes it possible to repurpose antitumor drugs for immunotherapy through nanodrug-based strategies amplifying ER stress. Therefore, this mini-review aims to provide a comprehensive summary of the latest developments of the strategies underlying nanodrugs in the treatment of cancer via manipulating ER stress. Meanwhile, the prospects of ER stress-inducing nanodrugs for cancer treatment are systematically discussed, which provide a sound platform for novel therapeutic insights and inspiration for the design of nanodrugs in treating cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...