Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
1.
Front Immunol ; 15: 1380211, 2024.
Article in English | MEDLINE | ID: mdl-38898888

ABSTRACT

Background: Klebsiella pneumoniae is a common Gram-negative bacterium. Blood infection caused by K. pneumoniae is one of the most common causes of human sepsis, which seriously threatens the life of patients. The immune status of peripheral blood mononuclear cells (PBMCs) based on single-cell RNA sequencing (scRNA-seq) in acute stage and recovery stage of sepsis caused by K. pneumoniae bloodstream infection has not been studied. Methods: A total of 13 subjects were included in this study, 3 healthy controls, 7 patients with K. pneumoniae bloodstream infection in the acute stage (4 patients died), and 3 patients in the recovery stage. Peripheral blood of all patients was collected and PBMCs were isolated for scRNA-seq analysis. We studied the changes of PBMCs components, signaling pathways, differential genes, and cytokines in acute and recovery stages. Results: During K. pneumoniae acute infection we observed a decrease in the proportion of T cells, most probably due to apoptosis and the function of T cell subtypes was disorder. The proportion of monocytes increased in acute stage. Although genes related to their phagocytosis function were upregulated, their antigen presentation capacity-associated genes were downregulated. The expression of IL-1ß, IL-18, IFNGR1 and IFNGR2 genes was also increased in monocytes. The proportion of DCs was depleted during the acute stage and did not recover during sepsis recovery. DCs antigen presentation was weakened during the acute stage but recovered fast during the recovery stage. pDCs response to MCP-1 chemokine was weakened, they recovered it quickly during the recovery stage. B cells showed apoptosis both in the acute stage and recovery stage. Their response to complement was weakened, but their antigen presentation function was enhanced. The proportion of NK cells stable during all disease's stages, and the expression of IFN-γ gene was upregulated. Conclusion: The proportion of PBMCs and their immune functions undergo variations throughout the course of the disease, spanning from the acute stage to recovery. These findings provide new insights into the mechanism of PBMCs immune function during K. pneumoniae bloodstream infection sepsis and recovery and sets the basis for further understanding and treatment.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Leukocytes, Mononuclear , Sepsis , Humans , Klebsiella pneumoniae/immunology , Klebsiella Infections/immunology , Klebsiella Infections/blood , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Male , Female , Middle Aged , Sepsis/immunology , Sepsis/microbiology , Sepsis/blood , Sepsis/genetics , Aged , Single-Cell Analysis , Cytokines/blood , Bacteremia/immunology , Bacteremia/microbiology , Bacteremia/genetics , Sequence Analysis, RNA , Adult
2.
Vaccines (Basel) ; 12(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38932301

ABSTRACT

Group B Streptococcus (GBS) is a life-threatening opportunistic pathogen, particularly in pregnant women, infants, and the elderly. Currently, maternal vaccination is considered the most viable long-term option for preventing GBS mother-to-infant infection, and two polysaccharide conjugate vaccines utilizing CRM197 as a carrier protein have undergone clinical phase II trials. Surface immunogenic protein (Sip), present in all identified serotypes of GBS strains so far, is a protective surface protein of GBS. In this study, the type Ia capsular polysaccharide (CPS) of GBS was utilized as a model to develop candidate antigens for a polysaccharide conjugate vaccine by coupling it with the Sip of GBS and the traditional carrier protein CRM197. Serum analysis from immunized New Zealand rabbits and CD1 mice revealed that there was no significant difference in antibody titers between the Ia-Sip group and Ia-CRM197 group; however, both were significantly higher than those observed in the Ia polysaccharide group. Opsonophagocytosis and passive immune protection results using rabbit serum indicated no significant difference between the Ia-Sip and Ia-CRM197 groups, both outperforming the Ia polysaccharide group. Furthermore, serum from the Ia-Sip group had a cross-protective effect on multiple types of GBS strains. The challenge test results in CD1 mice demonstrated that the Ia-Sip group provided complete protection against lethal doses of bacteria and also showed cross-protection against type III strain. Our study demonstrates for the first time that Ia-Sip is immunogenic and provides serotype-independent protection in glycan conjugate vaccines, which also indicates Sip may serve as an excellent carrier protein for GBS glycan conjugate vaccines and provide cross-protection against multiple GBS strains.

3.
Front Biosci (Landmark Ed) ; 29(4): 156, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38682211

ABSTRACT

BACKGROUND: Environmental conditions, such as photoperiod, affect the developmental response of plants; thus, plants have evolved molecular mechanisms to adapt to changes in photoperiod. In Bougainvillea spp., the mechanism of flower formation underlying flowering control techniques remains poorly understood, and the physiological changes that occur during flower bud formation and the expression of related genes are not yet fully understood. METHODS: In this study, we induced flowering of potted Bougainvillea glabra 'Sao Paulo' plants under light-control treatments and analyzed their effects on flowering time, number of flower buds, flowering quality, as well as quality of flower formation, which was analyzed using transcriptome sequencing. RESULTS: Light-control treatment effectively induced the rapid formation of flower buds and early flowering in B. glabra 'Sao Paulo', with the time of flower bud formation being 119 days earlier and the flowering period extended six days longer than those of the control plants. The light-control treatment caused the bracts to become smaller and lighter in color, while the number of flowers increased, and the neatness of flowering improved. Transcriptome sequencing of the apical buds identified 1235 differentially expressed genes (DEGs) related to the pathways of environmental adaptation, biosynthesis of other secondary metabolites, glycan biosynthesis and metabolism, and energy metabolism. DEGs related to gibberellin metabolism were analyzed, wherein five DEGs were identified between the control and treatment groups. Transcriptomic analysis revealed that the gibberellin regulatory pathway is linked to flowering. Specifically, GA and GID1 levels increased during this process, enhancing DELLA protein degradation. However, decreasing this protein's binding to CO did not halt FT upregulation, thereby advancing the flowering of B. glabra 'Sao Paulo'. CONCLUSIONS: The findings of our study have implications for future research on photoperiod and its role in controlling flowering timing of Bougainvillea spp.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Photoperiod , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Nyctaginaceae/genetics , Nyctaginaceae/growth & development , Nyctaginaceae/metabolism , Transcriptome , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling
4.
Langmuir ; 40(13): 6971-6979, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38517386

ABSTRACT

The development of fluorescently labeled microspheres is a critical aspect of advancing the technology of lateral flow immunochromatography (LFIA) for biological detection. Nevertheless, potential interference posed by the background fluorescence originating from the nitrocellulose (NC) membrane would significantly impact the sensitivity and accuracy of microsphere-based detection in LFIA. In this work, an attempt was made to extend the π-conjugated system and asymmetric structure of rhodamine fluorophore, resulting in the synthesis of dye molecules (RB2) incorporating double bonds, which can reach an absolute photoluminescence quantum yield (PLQY) of 30.01% in EtOH. Subsequently, carboxyl group functionalized fluorescent microspheres were prepared in a two-step copolymerization via soap-free emulsion polymerization. The obtained microspheres were characterized by scanning electron microscopy, transmission electron microscopy, DLS, Fourier transform infrared spectroscopy, ultraviolet spectrophotometry, and fluorescence spectrophotometry. The results showed that RB2 was successfully copolymerized into the microspheres, and the resulting microspheres had good dispersion and stability with high red fluorescence intensity (λabs ∼ 610 nm, λem ∼ 660 nm). Utilizing these microspheres, the resulting lateral flow immunoassay was successfully found to detect SARS-CoV-2 N protein with a detection limit of 2.5 pg/mL and the linear concentration spanning from 2.5 pg/mL to 10 ng/mL. The results confirm the effectiveness of the synthetic fluorescent microspheres as the label for LFIA.


Subject(s)
Fluorescent Dyes , Polymers , Microspheres , Immunoassay , Fluorescent Dyes/chemistry , Chromatography, Affinity/methods
5.
Genomics ; 116(2): 110811, 2024 03.
Article in English | MEDLINE | ID: mdl-38387766

ABSTRACT

Sugarcane molasses is one of the main raw materials for bioethanol production, and Saccharomyces cerevisiae is the major biofuel-producing organism. In this study, a batch fermentation model has been used to examine ethanol titers of deletion mutants for all yeast nonessential genes in this yeast genome. A total of 42 genes are identified to be involved in ethanol production during fermentation of sugarcane molasses. Deletion mutants of seventeen genes show increased ethanol titers, while deletion mutants for twenty-five genes exhibit reduced ethanol titers. Two MAP kinases Hog1 and Kss1 controlling the high osmolarity and glycerol (HOG) signaling and the filamentous growth, respectively, are negatively involved in the regulation of ethanol production. In addition, twelve genes involved in amino acid metabolism are crucial for ethanol production during fermentation. Our findings provide novel targets and strategies for genetically engineering industrial yeast strains to improve ethanol titer during fermentation of sugarcane molasses.


Subject(s)
Saccharomycetales , Saccharum , Fermentation , Ethanol/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharum/genetics , Saccharum/metabolism , Saccharomycetales/metabolism , MAP Kinase Signaling System , Molasses , Amino Acids
6.
J Thorac Dis ; 15(9): 4987-5005, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37868883

ABSTRACT

Background: Stenotrophomonas maltophilia (SMA) has emerged as an important pathogen capable of causing an opportunistic and nosocomial infection. We performed RNA sequencing (RNA-seq) of lung tissues from mice with pulmonary SMA infection over time via aerosolized intratracheal inhalation to investigate transcription profile changes in SMA-infected lungs. Methods: A mouse model of acute lethal SMA pneumonia was established in this study using aerosolized intratracheal inhalation, laying the groundwork for future SMA research. RNA-seq was then used to create a transcriptional profile of the lungs of the model mice at 0, 4, 12, 24, 48, and 72 hours post-infection (hpi). Mfuzz time clustering, weighted gene coexpression network analysis (WGCNA), and Immune Cell Abundance Identifier for mouse (ImmuCellAI-mouse) were used to analyze RNA-seq data. Results: A gradual change in the lung transcriptional profile was observed, which was consistent with the expected disease progression. At 4 hpi, the expression of genes related to the acute phase inflammatory response increased, as predicted abundance of innate immune cells. At this stage, an increased demand for energy was also observed, including an increase in the expression of genes involved in circulation, muscle function and mitochondrial respiratory chain function. The expression of genes associated with endoplasmic reticulum stress (ERS) and autophagy increased at 24 hpi. Unlike the number of natural killer (NK) cells following most bacterial lung infections, the abundance of NK cells decreased following infection with SMA. The expression levels of Cxcl10, Cd14, Gbp5, Cxcr2, Tnip1, Zc3h12a, Egr1, Sell and Gbp2 were high and previously unreported in SMA pneumonia, and they may be important targets for future studies. Conclusions: To our knowledge, this is the first study to investigate the pulmonary transcriptional response to SMA infection. The findings shed light on the molecular mechanisms underlying the pathogenesis of SMA pneumonia, which may aid in the development of therapies to reduce the occurrence of SMA pulmonary infection.

7.
J Transl Med ; 21(1): 762, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891586

ABSTRACT

BACKGROUND: Early availability of pathogen identification in urinary tract infections (UTIs) has critical importance in disease management. Metagenomic next-generation sequencing (mNGS) has the potential to transform how acute and serious infections are diagnosed by offering unbiased and culture-free pathogen detection. However, clinical experience with application of the mNGS test is relatively limited. METHODS: We therefore established a MinION-based mNGS pathogens diagnostic platform and evaluated its potential for clinical implementation in UTIs with clinical samples. 213 urine samples from patients with suspected UTIs were included and subjected to mNGS testing using the MinION platform. mNGS results were compared to the gold standard of clinical culture and composite standard of combining clinical testing, confirmatory qPCR testing, and clinical adjudication by doctors. RESULTS: The mNGS exhibited a sensitivity of 81.4% and a specificity of 92.3%, along with a positive predictive value of 96.6%, a negative predictive value of 64.9%, and an overall accuracy of 84.4%, all of which were determined based on the gold standard of routine culture results. When assessed against the composite standard, the sensitivity and specificity both increased to 89.9% and 100%, respectively, while the accuracy rose to 92.4%. Notably, the positive predictive value and negative predictive value also saw improvements, reaching 100% and 76.8%, respectively. Moreover, this diagnostic platform successfully identified dsDNA viruses. Among the 65 culture-negative samples, the viral detection rate reached 33.8% (22/65) and was subsequently validated through qPCR. Furthermore, the automatic bioinformatics pipeline we developed enabled one-click analysis from data to results, leading to a significant reduction in diagnosis time. CONCLUSION: These results demonstrate that the pathogen detection performance of mNGS is sufficient for diagnostic testing in clinical settings. As the method is generally unbiased, it can improve diagnostic testing of UTIs and other microbial infections.


Subject(s)
High-Throughput Nucleotide Sequencing , Urinary Tract Infections , Humans , Urinary Tract Infections/diagnosis , Cluster Analysis , Computational Biology , Metagenomics , Sensitivity and Specificity
8.
Pharmacol Res ; 196: 106933, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37729957

ABSTRACT

Both environmental and genetic factors contribute to the etiology of autoimmune thyroid disease (AITD) including Graves' disease (GD) and Hashimoto's thyroiditis (HT). However, the exact pathogenesis and interactions that occur between environmental factors and genes remain unclear, and therapeutic targets require further investigation due to limited therapeutic options. To solve such problems, this study utilized single-cell transcriptome, whole transcriptome, full-length transcriptome (Oxford nanopore technology), and metabolome sequencing to examine thyroid lesion tissues from 2 HT patients and 2 GD patients as well as healthy thyroid tissue from 1 control subject. HT patients had increased ATF4-positive thyroid follicular epithelial (ThyFoEp) cells, which significantly increased endoplasmic reticulum stress. The enhanced sustained stress resulted in cell death mainly including apoptosis and necroptosis. The ATF4-based global gene regulatory network and experimental validation revealed that N6-methyladenosine (m6A) reader hnRNPC promoted the transcriptional activity, synthesis, and translation of ATF4 through mediating m6A modification of ATF4. Increased ATF4 expression initiated endoplasmic reticulum stress signaling, which when sustained, caused apoptosis and necroptosis in ThyFoEp cells, and mediated HT development. Targeting hnRNPC and ATF4 notably decreased ThyFoEp cell death, thus ameliorating disease progression. Collectively, this study reveals the mechanisms by which microenvironmental cells in HT and GD patients trigger and amplify the thyroid autoimmune cascade response. Furthermore, we identify new therapeutic targets for the treatment of autoimmune thyroid disease, hoping to provide a potential way for targeted therapy.

9.
J Immunol Methods ; 522: 113570, 2023 11.
Article in English | MEDLINE | ID: mdl-37774777

ABSTRACT

BACKGROUND: Human neutrophil lipocalin (HNL) is a marker of neutrophil activation and has a high efficacy in diagnosing bacterial infections. In this study, we applied the AlphaLISA technique to measure the serum level of HNL, evaluate HNL's efficacy in diagnosing septic shock, and identify any association between HNL level and septic patients' prognosis. METHODS: We collected 146 serum samples from the Fifth Medical Center of Chinese PLA General Hospital. HNL was measured by AlphaLISA and results were compared with commercial ELISA kits. We studied 78 patients admitted to the ICU with sepsis and data on their clinical and physiological characteristics were recorded. Blood levels of HNL, procalcitonin (PCT), high-sensitivity C-reactive protein (hs-CRP), and lactate were measured. A receiver operating characteristic (ROC) curve was used to evaluate the performance of each marker. RESULTS: The AlphaLISA assay for serum HNL had a detection range from 1.5 ng/mL to 1000 ng/mL, with a detection limit of 1 ng/mL and a detection time of approximately 25 min. The AlphaLISA assay's results were in high agreement with ELISA results (R2 = 0.9413). HNL levels were analyzed in sepsis patients, and HNL was significantly higher in sepsis patients with shock compared to sepsis patients without shock (median 356.47 ng/mL vs 158.93 ng/mL, P < 0.0001) and in the 28-day non-survivor group compared to the 28-day survivor group (median 331.83 ng/mL vs 175.17 ng/mL, P < 0.0001). ROC curve analysis was performed for the biomarkers. In differentiating the diagnosis of septic shock from sepsis patients, HNL was the most effective marker (AUC = 0.857), followed by PCT (AUC = 0.754) and hs-CRP (AUC = 0.627). In predicting the prognosis of septic patients, lactate had the best effect (AUC = 0.805), followed by HNL (AUC = 0.784), PCT (AUC = 0.721), and hs-CRP (AUC = 0.583). CONCLUSIONS: As an assessment tool, we found that our AlphaLISA had good consistency with an ELISA and had several other advantages, including requiring a shorter processing time and detecting a wider range of serum HNL concentrations. Monitoring serum HNL levels of patients admitted to the ICU might be useful in distinguishing sepsis patients who have septic shock from other sepsis patients, indicating its value in the prediction of sepsis patient prognosis.


Subject(s)
Sepsis , Shock, Septic , Humans , Shock, Septic/diagnosis , C-Reactive Protein/analysis , Lipocalins , Neutrophils , Biomarkers , Procalcitonin , Prognosis , Lactic Acid , ROC Curve
10.
Biomicrofluidics ; 17(4): 041301, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37614678

ABSTRACT

Electrochemical Immunosensing (EI) combines electrochemical analysis and immunology principles and is characterized by its simplicity, rapid detection, high sensitivity, and specificity. EI has become an important approach in various fields, such as clinical diagnosis, disease prevention and treatment, environmental monitoring, and food safety. However, EI multi-component detection still faces two major bottlenecks: first, the lack of cost-effective and portable detection platforms; second, the difficulty in eliminating batch differences and accurately decoupling signals from multiple analytes. With the gradual maturation of biochip technology, high-throughput analysis and portable detection utilizing the advantages of miniaturized chips, high sensitivity, and low cost have become possible. Meanwhile, Artificial Intelligence (AI) enables accurate decoupling of signals and enhances the sensitivity and specificity of multi-component detection. We believe that by evaluating and analyzing the characteristics, benefits, and linkages of EI, biochip, and AI technologies, we may considerably accelerate the development of EI multi-component detection. Therefore, we propose three specific prospects: first, AI can enhance and optimize the performance of the EI biochips, addressing the issue of multi-component detection for portable platforms. Second, the AI-enhanced EI biochips can be widely applied in home care, medical healthcare, and other areas. Third, the cross-fusion and innovation of EI, biochip, and AI technologies will effectively solve key bottlenecks in biochip detection, promoting interdisciplinary development. However, challenges may arise from AI algorithms that are difficult to explain and limited data access. Nevertheless, we believe that with technological advances and further research, there will be more methods and technologies to overcome these challenges.

11.
Polymers (Basel) ; 15(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37571120

ABSTRACT

To develop a high-efficient extraction method, we investigated the use of high-pressure homogenization (HPH) as a novel pretreatment technology for the extraction of sodium alginate (SA) from Laminaria japonica. After the single-factor experiment, the results demonstrated that under the conditions of 100 MPa HPH pressure, 4 cycles, pH 6.0, and 0.5% EDTA for 3.0 h, the optimized extraction yield of HPH reached 34%. To further clarify the effect on the structural properties of HPH-extracted SA, we conducted comprehensive analysis using SEM, FTIR, MRS, NMR, XRD, TGA, and a T-AOC assay. Our findings revealed that HPH pretreatment significantly disrupted the structure of L. japonica cells and reduced their crystallinity to 76.27%. Furthermore, the antioxidant activity of HPH-extracted SA reached 0.02942 mgVceq∙mg-1. Therefore, the HPH pretreatment method is a potential strategy for the extraction of alginate.

12.
World J Gastroenterol ; 29(24): 3793-3806, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37426322

ABSTRACT

BACKGROUND: Formyl peptide receptor 2 (Fpr2) is an important receptor in host resistance to bacterial infections. In previous studies, we found that the liver of Fpr2-/- mice is the most severely damaged target organ in bloodstream infections, although the reason for this is unclear. AIM: To investigate the role of Fpr2 in liver homeostasis and host resistance to bacterial infections. METHODS: Transcriptome sequencing was performed on the livers of Fpr2-/- and wild-type (WT) mice. Differentially expressed genes (DEGs) were identified in the Fpr2-/- and WT mice, and the biological functions of DEGs were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) en-richment analysis. Quantitative real time-polymerase chain reaction (qRT-PCR) and western blot (WB) analyses were used to further validate the expression levels of differential genes. Cell counting kit-8 assay was employed to investigate cell survival. The cell cycle detection kit was used to measure the distribution of cell cycles. The Luminex assay was used to analyze cytokine levels in the liver. The serum biochemical indices and the number of neutrophils in the liver were measured, and hepatic histopathological analysis was performed. RESULTS: Compared with the WT group, 445 DEGs, including 325 upregulated genes and 120 downregulated genes, were identified in the liver of Fpr2-/- mice. The enrichment analysis using GO and KEGG showed that these DEGs were mainly related to cell cycle. The qRT-PCR analysis confirmed that several key genes (CycA, CycB1, Cdc20, Cdc25c, and Cdk1) involved in the cell cycle had significant changes. The WB analysis confirmed a decrease in the expression of CDK1 protein. WRW4 (an antagonist of Fpr2) could inhibit the proliferation of HepG2 cells in a concentration dependent manner, with an increase in the number of cells in the G0/G1 phase, and a decrease in the number of cells in the S phase. Serum alanine aminotransferase levels increased in Fpr2-/- mice. The Luminex assay measurements showed that interleukin (IL)-10 and chemokine (C-X-C motif) ligand (CXCL)-1 levels were significantly reduced in the liver of Fpr2-/- mice. There was no difference in the number of neutrophils, serum C-reactive protein levels, and liver pathology between WT and Fpr2-/- mice. CONCLUSION: Fpr2 participates in the regulation of cell cycle and cell proliferation, and affects the expression of IL-10 and CXCL-1, thus playing an important protective role in maintaining liver homeostasis.


Subject(s)
Receptors, Formyl Peptide , Transcriptome , Animals , Mice , Cell Cycle , Cell Cycle Proteins/metabolism , Liver/metabolism , Receptors, Formyl Peptide/genetics , Receptors, Formyl Peptide/metabolism
13.
Gut Pathog ; 15(1): 32, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37415157

ABSTRACT

Listeria monocytogenes (Lm) is a facultative, intracellular Gram-positive pathogenic bacterium that causes sepsis, a condition characterized by persistent excessive inflammation and organ dysfunction. However, the pathogenesis of Lm-induced sepsis is unknown. In this research, we discovered that TRIM32 is required for innate immune regulation during Lm infection. Trim32 deficiency remarkably reduced bacteremia and proinflammatory cytokine secretion in mice with severe Lm infection, preventing sepsis. Trim32-/- mice had a lower bacterial burden after Lm infection and survived significantly longer than wild-type (WT) mice, as well as lower serum levels of inflammatory cytokines TNF-α, IL-6, IL-18, IL-12p70, IFN-ß, and IFN-γ at 1 day post infection (dpi) compared to WT mice. On the other hand, the chemokines CXCL1, CCL2, CCL7, and CCL5 were enhanced at 3 dpi in Trim32-/- mice than WT mice, reflecting increased recruitment of neutrophils and macrophages. Furthermore, Trim32-/- mice had higher levels of macrophage-associated iNOS to kill Lm. Collectively, our findings suggest that TRIM32 reduces innate immune cells recruitment and Lm killing capabilities via iNOS production.

14.
Sci Rep ; 13(1): 7452, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37156819

ABSTRACT

The prevalence and mortality of hepatocellular carcinoma (HCC) are still increasing. This study aimed to identify potential therapeutic targets related to patient prognosis. Data were downloaded from TCGA, GSE25097, GSE36376, and GSE76427 datasets. Differential analysis and enrichment analysis were performed in HCC. Cell deaths were evaluated, and least absolute shrinkage and selection operator regression (LASSO) regression was analyzed to screen candidate genes. Additionally, immune cell infiltration in HCC was assessed. We identified 4088 common DEGs with the same direction of differential expression in all four datasets, they were mainly enriched in immunoinflammation and cell cycle pathways. Apoptosis was significantly suppressed in HCC in GSEA and GSVA. After LASSO regression analysis, we screened CD69, CDC25B, MGMT, TOP2A, and TXNIP as candidate genes. Among them, CD69 significantly influenced the overall survival of HCC patients in both TCGA and GSE76427. CD69 may be a protective factor for outcome of HCC patients. In addition, CD69 was positive correlation with T cells and CD3E. CD69, CDC25B, MGMT, TOP2A, and TXNIP were potential diagnostic and prognostic target for HCC, especially CD69.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Biomarkers , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Genes, cdc , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Prognosis
15.
Front Med (Lausanne) ; 10: 1155551, 2023.
Article in English | MEDLINE | ID: mdl-37215702

ABSTRACT

Objective: Influenza B virus (IBV) is highly contagious, spreads rapidly, and causes seasonal epidemic respiratory disease in the human population, especially in immunocompromised people and young children. Clinical manifestations in this high-risk population are often more severe than in immunocompetent hosts and sometimes atypical. Therefore, rapid, and accurate detection of IBV is important. Methods: An amplified luminescent proximity homogeneous assay linked immunosorbent assay (AlphaLISA) was developed for detection of IBV by optimizing the ratio of IBV antibody-labeled receptor beads, streptavidin-conjugated donor beads and biotinylated IBV antibody, as well as the optimal temperature and time conditions for incubation. Assay sensitivity, specificity and reproducibility were evaluated. A total of 228 throat swab samples and inactivated influenza B virus were tested by AlphaLISA and lateral flow colloidal gold-based immunoassay (LFIA). Results: AlphaLISA produced the best results for detection of inactivated influenza B virus when IBV antibody-labeled acceptor beads were 50 µg/ mL, streptavidin-conjugated donor beads were 40 µg/mL, and biotinylated IBV antibody was 0.5 µg/mL at 37°C for 15-10 min. Under these conditions, AlphaLISA had a limit of detection of 0.24 ng/mL for the detection of influenza B nucleoprotein, did not cross react with other common respiratory viruses, and showed good reproducibility with inter-assay coefficient of variation (CV) and intra-assay CV < 5%. The results of 228 clinical throat swab samples showed good agreement between AlphaLISA and LFIA (Kappa = 0.982), and AlphaLISA showed better sensitivity than LFIA for detecting inactivated influenza B virus. Conclusion: AlphaLISA showed higher sensitivity and throughput in the detection of IBV and can be used for IBV diagnosis and epidemic control.

16.
Front Immunol ; 14: 1094331, 2023.
Article in English | MEDLINE | ID: mdl-36776849

ABSTRACT

The life-threatening disease streptococcal toxic shock-like syndrome (STSLS), caused by the bacterial pathogen Streptococcus suis (S. suis). Proinflammatory markers, bacterial load, granulocyte recruitment, and neutrophil extracellular traps (NETs) levels were monitored in wild-type (WT) and Fpr2-/- mice suffering from STSLS. LXA4 and AnxA1, anti-inflammatory mediators related to Fpr2, were used to identity a potential role of the Fpr2 in STSLS development. We also elucidated the function of Fpr2 at different infection sites by comparing the STSLS model with the S. suis-meningitis model. Compared with the WT mice, Fpr2-/- mice exhibited a reduced inflammatory response and bacterial load, and increased neutrophil recruitment. Pretreatment with AnxA1 or LXA4 impaired leukocyte recruitment and increased both bacterial load and inflammatory reactions in WT but not Fpr2-/- mice experiencing STSLS. These results indicated that Fpr2 impairs neutrophil recruitment during STSLS, and this impairment is enhanced by AnxA1 or LXA4. By comparing the functions of Fpr2 in different S. suis infection models, inflammation and NETs was found to hinder bacterial clearance in S. suis meningitis, and conversely accelerate bacterial clearance in STSLS. Therefore, interference with neutrophil recruitment could potentially be harnessed to develop new treatments for this infectious disease.


Subject(s)
Shock, Septic , Streptococcal Infections , Streptococcus suis , Animals , Mice , Inflammation , Neutrophil Infiltration , Shock, Septic/microbiology , Streptococcal Infections/microbiology , Streptococcus suis/physiology , Receptors, Formyl Peptide/metabolism
17.
Infect Drug Resist ; 16: 923-936, 2023.
Article in English | MEDLINE | ID: mdl-36814827

ABSTRACT

Background: The early identification of pathogens and their antibiotic resistance are essential for the management and treatment of patients affected by ventilator-associated pneumonia (VAP). However, microbiological culture may be time-consuming and has a limited culturability of many potential pathogens. In this study, we developed a rapid nanopore-based metagenomic next-generation sequencing (mNGS) diagnostic assay for detection of VAP pathogens and antimicrobial resistance genes (ARGs). Patients and Methods: Endotracheal aspirate (ETA) samples from 63 patients with suspected VAP were collected between November 2021 and July 2022. Receiver operating characteristic (ROC) curves were established to compare the pathogen identification performance of the target pathogen reads, reads percent of microbes (RPM) and relative abundance (RA). The evaluation of the accuracy of mNGS was performed comparing with the gold standard and the composite standard, respectively. Then, the ARGs were analyzed by mNGS. Results: ROC curves showed that RA has the highest diagnostic value and the corresponding threshold was 9.93%. The sensitivity and specificity of mNGS test were 91.3% and 78.3%, respectively, based on the gold standard, while the sensitivity and specificity of mNGS test were 97.4% and 100%, respectively, based on the composite standard. A total of 13 patients were virus-positive based on mNGS results, while the coinfection rate increased from 27% to 46% compared to the rate obtained based on clinical findings. The mNGS test also performed well at predicting antimicrobial resistance phenotypes. Patients with a late-onset VAP had a significantly greater proportion of ARGs in their respiratory microbiome compared to those with early-onset VAP (P = 0.041). Moreover, the median turnaround time of mNGS was 4.43 h, while routine culture was 72.00 h. Conclusion: In this study, we developed a workflow that can accurately detect VAP pathogens and enable prediction of antimicrobial resistance phenotypes within 5 h of sample receipt by mNGS.

18.
J Fam Issues ; 44(1): 91-111, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36605178

ABSTRACT

To comprehensively understand the Chinese family relationships (i.e., marital relationship, parent-child relationship, sibling relationship, and grandparent-grandchild relationship) during the COVID-19 pandemic, this study investigated the changes of family relationships and the individual differences related to knowledge of the COVID-19, personality traits (i.e., neuroticism and optimism), and emotional characteristics (i.e., emotion regulation and negative emotional reactions). From March 1 to April 5, 2020, 8821 participants were involved, including 3995 teenagers, 1146 unmarried young adults, 3571 married adults, and 109 grandparents. Results revealed a double-edged pattern that people experienced both positive changes and negative changes during the pandemic. Teenagers reported significant negative changes in the relationships with their parents. Peoples' knowledge of the COVID-19, neuroticism, optimism, emotion regulation, and negative emotional reactions were in varying extents to which accounted for the individual differences in the changes of family relationships. These findings help recognize the overall Chinese family relationships during the hard period.

19.
Curr Psychol ; 42(5): 3760-3768, 2023.
Article in English | MEDLINE | ID: mdl-33897226

ABSTRACT

The benefits of routines for children have been consistently demonstrated in previous literature. However, factors that may confer risks for child routines have seldom been examined, particularly in families where parents and grandparents co-care the children. This study aimed to investigate the associations of parents' and grandparents' depressive symptoms with preschoolers' daily routines in Chinese three-generation families and to determine whether household chaos mediated or moderated the associations. The participants were from 171 urban three-generation families where mothers, fathers, and grandmothers (97 paternal and 74 maternal) were primary caregivers. Mothers, fathers, and grandmothers reported their depressive symptoms at Wave 1; at Wave 2 (during the COVID-19 pandemic), caregivers reported household chaos and child routines. The results revealed that child routines were negatively predicted by parents' joint depressive symptoms rather than grandmothers' depressive symptoms. In the associations, household chaos acted as a mediator rather than a moderator. Specifically, household chaos marginally mediated the associations between parents' and grandmothers' depressive symptoms and child routines only in maternal three-generation families. These findings suggest that in three-generation families, caregivers with more depressive symptoms may elicit more chaotic family environments, which may in turn compromise their children's daily routines.

20.
Front Public Health ; 10: 987517, 2022.
Article in English | MEDLINE | ID: mdl-36339146

ABSTRACT

Botulinum toxin A(BoNT/A) is a neurotoxin produced by the bacteria Clostridium botulinum, which can cause serious food poisoning and is recognized as a potential biological warfare agent. BoNT/A is does not degrade easily and can remain in the complex matrix for a long time. Meanwhile, the poisonous dose of botulinum toxin exceptionally low and intravenous human lethal doses estimated at 1-3 ng/kg. Therefore, sensitive and accurate detection methods suitable for testing a wide range of complex samples are urgently needed. To this end, the "amplified luminescent proximity homogeneous assay linked immunosorbent assay" (AlphaLISA) was established for the detection of BoNT/A and its detection efficacy in plasma, beverage, food, and other complex samples was evaluated. The results showed that this method can very effectively resist matrix interference. The detection time is rapid, reaching a detection limit for all samples of up to 0.1 ng/mL in only 30 min. BoNT/A can also be accurately detected in vomit samples of patients with clinical food poisoning. This study demonstrates that AlphaLISA is an effective tool for the detection of BoNT/A in complex samples and can potentially be developed for commercial use in the future.


Subject(s)
Botulinum Toxins, Type A , Clostridium botulinum , Foodborne Diseases , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...