Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Signal ; 121: 111259, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38871040

ABSTRACT

Recurrent miscarriage (RM) is a distressing pregnancy complication with an unknown etiology. Increasing evidence indicates the relevance of dysregulation of human trophoblast stem cells (hTSCs), which may play a role in the development of RM. However, the potential molecular regulatory mechanism underlying the initiation and maintenance of hTSCs is yet to be fully elucidated. In this study, we performed data analysis and identified Forkhead box M1 (FOXM1) as a potential factor associated with RM. FOXM1 is a typical transcription factor known for its involvement in various pathophysiological processes, while the precise function of FOXM1 functions in hTSCs and RM remains incompletely understood. Utilizing RNA-seq, CUT&Tag, ChIP-qPCR, and sodium bisulfite conversion methods for methylation analysis, we elucidate the underlying regulatory mechanisms of FOXM1 in hTSCs and its implications in RM. Our findings demonstrate the relative high expression of FOXM1 in proliferating cytotrophoblasts (CTBs) compared to differentiated extravillous cytotrophoblasts (EVTs) and syncytiotrophoblasts (STBs). Besides, we provide evidence supporting a significant correlation between FOXM1 downregulation and the incidence of RM. Furthermore, we demonstrate the significant role of FOXM1 in regulating hTSCs proliferation and cell cycle through the transcriptional regulation of CDKN3, CCNB2, CCNA2, MAD2L1 and CDC25C. Notably, we observed a correlation between the downregulation of FOXM1 in RM and hypermethylation in its promoter region. Collectively, these results provide insights into the impact of FOXM1 on trophoblast regulation and offer a novel perspective on RM.

2.
Exp Cell Res ; 437(1): 113979, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38462209

ABSTRACT

INTRODUCTION: To explore the potential impact of 27-hydroxycholesterol (27-HC) on trophoblast cell function in pre-eclampsia. RESULTS: The levels of 27-HC and the expression of CYP27A1 are upregulated in clinical samples of PE. Furthermore, high concentrations of 27-HC can inhibit the invasion and migration ability of trophoblast cells in vitro, and this inhibitory effect is weakened after LXR silencing. In HTR8/SVneo cells treated with 27-HC, the expression of ABCA1/ABCG1 are increased. Finally, we established a mouse model of PE using l-NAME (N-Nitro-l-Arginine Methyl Ester). We found an increase in the levels of 27-HC in the peripheral blood serum of the PE mouse model, and an upregulation of CYP27A1 and LXR expressions in the placenta of the PE mouse model. CONCLUSION: 27-HC inhibits the invasion and migration ability of trophoblast cells by activating the LXR signaling pathway, which is involved in the pathogenesis of Pre-eclampsia(PE).


Subject(s)
Pre-Eclampsia , Pregnancy , Humans , Mice , Female , Animals , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Trophoblasts/metabolism , Placenta/metabolism , Signal Transduction/physiology , Up-Regulation , Cell Movement/physiology , Cell Proliferation/physiology
3.
Int Immunopharmacol ; 85: 106609, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32446199

ABSTRACT

Geniposide (GP), extracted from a traditional Chinese herb Gardenia jasminoides, has extensive pharmacological effects. But the effects and the potential mechanisms of GP on myocardial ischemia/reperfusion (I/R) injury are poorly understood. In present study, we investigated the effect of GP on myocardial I/R injury in vivo and hypoxia/reoxygenation (H/R) in vitro respectively, and its mechanism. The results showed that GP reduced myocardial infarct size, alleviated acute myocardial injury, improved cardiac function, regulated apoptosis-related proteins and inhibited apoptosis. In vitro experiments revealed that GP enhanced the cell viability, regulated apoptosis-related proteins and prevented cell apoptosis during H/R in H9c2 cells. GP inhibited the expression of autophagy-related proteins and autophagosome accumulation both in vivo and in vitro. The effects of GP were blocked by rapamycin (RAPA) administration. In summary, our results showed that GP protected against myocardial I/R injury and involved inhibition of autophagy, which might be through activating AKT/mTOR signaling pathways.


Subject(s)
Autophagy/drug effects , Cardiotonic Agents/pharmacology , Iridoids/pharmacology , Myocardial Reperfusion Injury/drug therapy , Animals , Apoptosis/drug effects , Autophagosomes/drug effects , Cardiotonic Agents/therapeutic use , Cell Line , Cell Survival/drug effects , Heart/physiopathology , Iridoids/chemistry , Iridoids/therapeutic use , Male , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/ultrastructure , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...