Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 219: 509-516, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31078818

ABSTRACT

Hypochlorite anion (ClO-) has been recognized as host defense destructing incursive bacteria and pathogens, a signal molecule inducing occurrence of apoptosis and a noxious agent when it is overproduced. It is significant to detect ClO- in mitochondria for getting meaningful physiological and pathological information. Compared with the fluorescence probes of emission wavelength in ultraviolet or visible region, those with near-infrared (NIR) fluorescence signal are advantageous due to the deeper tissue penetrability and less photo-bleaching effect. In this work, a new "off-on" NIR ClO--specific fluorescence probe (Mito-NClO) especially located in mitochondria was designed and synthesized by condensation of diaminomaleonitrile with a new fluorophore (Mito-NCHO). A marked "turn-on" NIR fluorescence signal was observed on account of the oxidation of the imine bond by NaClO. Moreover, in the range from 0 to 20 µM, this probe had the capability to quantitatively detect ClO- with a detection limit as low as 90.2 nM. Additionally, the probe exerted other excellent properties, including larger stokes shift (117 nm), better aqueous solubility, high selectivity toward ClO-, rapid response and selective mitochondrial location. Furthermore, the bio-imaging experiments clearly demonstrated that Mito-NClO facilitated the visualization of exogenous and endogenous ClO- in living HeLa cells and zebrafish model. Therefore, we speculate that the probe Mito-NClO can be served as an ideal tool for the monitoring of ClO- in biosystems.


Subject(s)
Fluorescent Dyes/chemistry , Hypochlorous Acid/analysis , Mitochondria/chemistry , Animals , HeLa Cells , Humans , Microscopy, Fluorescence , Optical Imaging , Zebrafish
2.
Talanta ; 197: 326-333, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30771943

ABSTRACT

Hydrogen sulfide (H2S) has been considered to be involved in cytoprotective processes and redox signaling. It is very meaningful to track and analyze it in mitochondria. Herein, we report a novel "turn-on" mitochondria-targeting near-infrared fluorescent probe (Mito-NIR-SH) for detection of H2S in living cells, which was designed and synthesized by introducing 2,4-dinitrophenyl as fluorescence quenching group and H2S response moiety into Changsha near-infrared fluorophore (CS-OH). The structure of the fluorophore and the probe were characterized by 1H NMR, 13C NMR and mass spectrometry. Meanwhile, Mito-NIR-SH could quantitatively detect H2S at concentrations ranging from 0 to 30 µM with a detection limit as low as 89.3 nM, showing good chemical stability, fast "turn-on" response, selectively mitochondrial location, as well as high sensitivity and selectivity toward H2S. Based on this, it was successfully applied to imaging exogenous and endogenous H2S in living HeLa cells via confocal fluorescence microscopy.


Subject(s)
Fluorescent Dyes/chemistry , Hydrogen Sulfide/analysis , Mitochondria/chemistry , Optical Imaging , HeLa Cells , Humans , Microscopy, Fluorescence
3.
Article in English | MEDLINE | ID: mdl-30597436

ABSTRACT

Hydrogen sulfide (H2S) has been regarded as an important gas transmitter playing vital role in cytoprotective processes and redox signaling. It is very meaningful to monitor and analyze it in biosystem for obtaining important physiological and pathological information. Despite numerous fluorescent probes for cellular H2S have been reported in past decades, only a few have capability to detect mitochondrial H2S with near-infrared (NIR) emission. Therefore, a new mitochondria-targeting NIR fluorescent probe (Mito-NSH) for detection of cellular H2S was developed by introducing 2,4-dinitrophenyl ether into a novel dye (Mito-NOH). A large "turn-on" NIR fluorescence response was obtained due to thiolysis of ether to hydroxyl group when Mito-NSH was treated with NaHS. Moreover, Mito-NSH could quantitatively detect H2S at concentration ranging from 0 to 30 µM with a detection limit of 68.2 nM, and it exerts some superior optical properties, such as large stokes shift (107 nm), highly selectively mitochondria location, fast response and high selectivity to H2S. More impressively, it was successfully applied to imaging exogenous and endogenously generated H2S in living HeLa cells via confocal fluorescence microscopy.


Subject(s)
Fluorescent Dyes/chemistry , Hydrogen Sulfide/analysis , Imaging, Three-Dimensional , Mitochondria/metabolism , Spectroscopy, Near-Infrared/methods , Cell Death , Fluorescent Dyes/chemical synthesis , HeLa Cells , Humans , Molecular Probes/chemical synthesis , Molecular Probes/chemistry , Spectrometry, Fluorescence
4.
Bioorg Med Chem Lett ; 27(17): 4180-4184, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28751142

ABSTRACT

With the recent research advances in molecular biology and technology, multiple credible hypotheses about the progress of Alzheimer's disease (AD) have been proposed; multi-target drugs have emerged as an innovative therapeutic approach for AD. Current clinical therapy for AD patients is mainly palliative treatment targeting acetylcholinesterase (AChE). Inhibition of phosphodiesterase 5A (PDE5A) has recently been validated as a potentially novel therapeutic approach for Alzheimer's disease (AD). In this work, series of new compounds were designed, synthesized and evaluated as dual cholinesterase and PDE5A inhibitor. Biological results revealed that some of these compounds display good biological activities against AChE with IC50 values about 44.67-169.80nM (donepezil IC50 50.12nM). Notably, compound 12 presented potent activities against PDE5A with IC50 values about 50µM (sildenafil IC50 12.59µM), and some of these compounds showed low cell toxicity to A549 cells in vitro.


Subject(s)
Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Drug Design , Phosphodiesterase Inhibitors/pharmacology , Alzheimer Disease/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Phosphodiesterase Inhibitors/chemistry , Structure-Activity Relationship
5.
Eur J Med Chem ; 138: 738-747, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-28728106

ABSTRACT

In this paper, the preparation of a new class of multi-target-directed ligands (MTDLs) based on a 7-amino-1,4-dihydro-2H-isoquilin-3-one, whose lead (compound I) showed promising properties in acetylcholinesterase (AChE) inhibitory activity [1], is described. The results of in vitro activities and molecular docking demonstrated that the target molecule (compounds 10a-n) with three parts of aromatic moieties and appropriate structural length can interact with aromatic residues in catalytic active site (CAS), peripheral anionic site (PAS) and the channel of AChE. And the introduce of connecting amide bonds, enables the target molecules provide sufficient hydrogen bond donors and acceptors to interact with the catalytic site of BACE-1. Notably, compound 10d exerted excellent AChE inhibition (IC50 = 18.93 ± 1.02 pM, 181-fold more inhibitory effect compared with donepezil), BACE-1 inhibition (97.68 ± 8.01% at 20 µM), and good metal chelating property, which can be chosen as lead compound for further optimization of novel small ligand for the treatment of Alzheimer's disease.


Subject(s)
Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/pharmacology , Isoquinolines/pharmacology , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Isoquinolines/chemical synthesis , Isoquinolines/chemistry , Molecular Structure , Structure-Activity Relationship
6.
Talanta ; 160: 470-474, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27591640

ABSTRACT

An efficient naphthalene-based two-photon fluorescent probe for endogenous HClO has been reported in the present study, which consists of a 6-(2-benzothiazolyl)-2-naphthalenol fluorophore connected with a 4-aminophenol (the fluorescence quenching and response group). This probe exhibits a high selectivity and excellent sensitivity with a detection limit of 7.6nM over other reactive oxygen species and analyte species, and the fluorescence intensity enhanced 103-fold when responsed. Furthermore, it was successfully used for two-photon imaging of endogenous HClO in live cells with high-resolution.

7.
Curr Comput Aided Drug Des ; 9(3): 385-95, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24010934

ABSTRACT

A quantitative structure-activity relationship (QSAR) study has been carried out on acetylcholinesterase (AChE) inhibitors with comparative field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA) and hologram quantitative structure-activity relationship (HQSAR). In order to investigate the effect of alignment on modeling and find out the best alignment strategy, three different alignment rules were applied to generate CoMFA and CoMSIA models. Statistical results of the highly significant models (CoMFA q² = 0.748, r² =0.996, predicted r² =0.789; CoMSIA q² =0.755, r² =0.973, predicted r² = 0.706; HQSAR q² = 0.884, r² = 0.973, predicted r² = 0.734) reveal considerable predictive ability. Analysis of the contour maps of CoMFA and CoMSIA models and the atomic contribution maps of HQSAR model may contribute to develop novel and potential AChE inhibitors.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Quantitative Structure-Activity Relationship , Computer-Aided Design , Drug Design , Humans , Models, Molecular
8.
J Mol Model ; 19(8): 3135-42, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23609224

ABSTRACT

The adsorption behaviors of three carboxyl hydroxamic acids on diaspore (010) and kaolinite (001) have been studied by density functional theory (DFT) and molecular dynamics (MD) method. The results indicated that carboxyl hydroxamic acids could adsorb on diaspore surface by ionic bonds and hydrogen bonds, and adsorb on kaolinite surface by hydrogen bonds. The models of carboxyl hydroxamic acids adsorbed on diaspore and kaolinite surfaces are proposed.

9.
Int J Biol Macromol ; 42(5): 405-12, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18456317

ABSTRACT

The covalently immobilized of Saccharomyces cerevisiae alcohol dehydrogenase (SCAD) to magnetic Fe(3)O(4) nanoparticles via glutaraldehyde coupling reaction was studied. The magnetic Fe(3)O(4) nanoparticles were prepared by hydrothermal method using H(2)O(2) as an oxidizer. Functionalization of surface-modified magnetic particles was performed by the covalent binding of chitosan onto the surface. The amino functional group on the magnetic Fe(3)O(4)-chitosan particles surface and the amino group of the dehydrogenase were coupled with glutaraldehyde. The immobilization process did not affect the size and structure of magnetic nanoparticles. For the reduction of phenylglyoxylic acid by immobilized SCAD, the kinetic analysis data indicated that the immobilized SCAD retained 48.77% activity of its original activity. The activation energy within 20-40 degrees C, the maximum specific activity and the Michaelis constants for phenylglyoxylic acid were 7.79 KJ mol(-1), 279.33 nmol min(-1) and 37.77 mmol l(-1), respectively. Furthermore, the immobilized SCAD enhanced thermal stability and good durability in the repeated use after recovered by magnetic separations.


Subject(s)
Alcohol Dehydrogenase/chemistry , Alcohol Dehydrogenase/metabolism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Magnetics , Metal Nanoparticles/chemistry , Saccharomyces cerevisiae/enzymology , Enzyme Stability , Hydrogen-Ion Concentration , Kinetics , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Transmission , Molecular Structure , Spectroscopy, Fourier Transform Infrared , Temperature
10.
J Comput Chem ; 24(7): 842-9, 2003 May.
Article in English | MEDLINE | ID: mdl-12692793

ABSTRACT

Based on bonding parameters such as Yang's Electronegative Force Gauge Y(i), electronic number of valence layer Z(i), number of combined hydrogen atoms h(i), number of bonding electron b(i), and quantum number such as the highest main quantum number of valence layer n(i), a novel atomic valence delta(i) (Y) is defined and a novel topological index (1)chi(Y) is derived from the atomic valence. The atomic valence is defined as delta(i) (Y) = (Z(i) - h(i))b(i)/n(i) (2)Y(i), while the topological index is expressed as (1)chi(Y) summation operator (i,j=1) (m) (delta(i) (Y)delta(j) (Y))(-1/2). Subsequently, the index (1)chi(Y) is utilized to study the structure-property relationships of complex organic compounds. The results of correlativity showed that the index is highly and extensively correlated with such properties as solubility of phenyl chlorides, gas chromatographic retention index of alkoxyl silanes, and toxicity of heterocyclic nitrogen-containing compounds. Moreover, predicted values are quite consistent with experimental ones when the index is employed to predict the partition coefficient (log P) of fatty alcohols, phenyl chlorides, and barbitals. Compared to the topological indices reported in the literature, the universality and reliability of (1)chi(Y) to the properties of complex organic compounds have been distinctively improved, and its calculating process is simple and convenient.

SELECTION OF CITATIONS
SEARCH DETAIL
...