Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.350
Filter
1.
Physiol Plant ; 176(3): e14371, 2024.
Article in English | MEDLINE | ID: mdl-38837414

ABSTRACT

The WRKY transcription factor (TF) genes form a large family in higher plants, with 72 members in Arabidopsis (Arabidopsis thaliana). The gaseous phytohormone ethylene (ET) regulates multiple physiological processes in plants. It is known that 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACSs, EC 4.4.1.14) limit the enzymatic reaction rate of ethylene synthesis. However, whether WRKY TFs regulate the expression of ACSs and/or ACC oxidases (ACOs, EC 1.14.17.4) remains largely elusive. Here, we demonstrated that Arabidopsis WRKY22 positively regulated the expression of a few ACS and ACO genes, thus promoting ethylene production. Inducible overexpression of WRKY22 caused shorter hypocotyls without ACC treatment. A qRT-PCR screening demonstrated that overexpression of WRKY22 activates the expression of several ACS and ACO genes. The promoter regions of ACS5, ACS11, and ACO5 were also activated by WRKY22, which was revealed by a dual luciferase reporter assay. A follow-up chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) and electrophoretic mobility shift assay (EMSA) showed that the promoter regions of ACS5 and ACO5 could be bound by WRKY22 directly. Moreover, wrky22 mutants had longer primary roots and more lateral roots than wild type, while WRKY22-overexpressing lines showed the opposite phenotype. In conclusion, this study revealed that WRKY22 acts as a novel TF activating, at least, the expression of ACS5 and ACO5 to increase ethylene synthesis and modulate root development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ethylenes , Gene Expression Regulation, Plant , Lyases , Plant Roots , Transcription Factors , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Ethylenes/metabolism , Ethylenes/biosynthesis , Transcription Factors/metabolism , Transcription Factors/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Lyases/genetics , Lyases/metabolism , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Promoter Regions, Genetic/genetics , Carbon-Carbon Lyases/metabolism , Carbon-Carbon Lyases/genetics , Transcriptional Activation/genetics
2.
J Agric Food Chem ; 72(22): 12445-12458, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38771652

ABSTRACT

Global water deficit is a severe abiotic stress threatening the yielding and quality of crops. Abscisic acid (ABA) is a phytohormone that mediates drought tolerance. Protein kinases and phosphatases function as molecular switches in eukaryotes. Protein phosphatases type 2C (PP2Cs) are a major family that play essential roles in ABA signaling and stress responses. However, the role and underlying mechanism of PP2C in rapeseed (Brassica napus L.) mediating drought response has not been reported yet. Here, we characterized a PP2C family member, BnaPP2C37, and its expression level was highly induced by ABA and dehydration treatments. It negatively regulates drought tolerance in rapeseed. We further identified that BnaPP2C37 interacted with multiple PYR/PYL receptors and a drought regulator BnaCPK5 (calcium-dependent protein kinase 5) through yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. Specifically, BnaPYL1 and BnaPYL9 repress BnaPP2C37 phosphatase activity. Moreover, the pull-down assay and phosphatase assays show BnaPP2C37 interacts with BnaCPK5 to dephosphorylate BnaCPK5 and its downstream BnaABF3. Furthermore, a dual-luciferase assay revealed BnaPP2C37 transcript level was enhanced by BnaABF3 and BnaABF4, forming a negative feedback regulation to ABA response. In summary, we identified that BnaPP2C37 functions negatively in drought tolerance of rapeseed, and its phosphatase activity is repressed by BnaPYL1/9 whereas its transcriptional level is upregulated by BnaABF3/4.


Subject(s)
Abscisic Acid , Brassica napus , Droughts , Gene Expression Regulation, Plant , Plant Proteins , Abscisic Acid/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Brassica napus/genetics , Brassica napus/metabolism , Protein Phosphatase 2C/metabolism , Protein Phosphatase 2C/genetics , Stress, Physiological , Plant Growth Regulators/metabolism , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/genetics , Drought Resistance
3.
Microorganisms ; 12(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38792726

ABSTRACT

Fire blight, a devastating disease caused by Erwinia amylovora, poses a significant threat to pear and apple trees in Xinjiang province, China. In an effort to combat this pathogen, we isolated 10 bacteria from various components of apple and crabapple trees and conducted screenings to assess their ability to inhibit E. amylovora in vitro. Through biochemical tests and partial 16S rRNA gene sequencing, we identified two promising strains, Priestia megaterium strain H1 and Bacillus subtilis strain I2. These strains were then evaluated for their efficacy in biocontrol under controlled laboratory conditions, focusing on immature fruits and leaves. Remarkably, all selected antagonists exhibited the capability to reduce the severity of the disease on both fruit and leaves. P. megaterium strain H1 and B. subtilis strain I2 exhibited significant reductions in disease incidence on both immature fruits and leaves compared to the control. Specifically, on immature fruits, they achieved reductions of 53.39% and 44.76%, respectively, while on leaves, they demonstrated reductions of 59.55% and 55.53%, respectively. Furthermore, during the study, we detected the presence of lipopeptides, including surfactin, iturins, bacillomycin D, and fengycins, in the methanol extract obtained from these two antagonistic bacteria using thin-layer chromatography (TLC). Based on the results obtained, B. subtilis strain I2 and P. megaterium strain H1 exhibit considerable potential for controlling fire blight. However, further evaluation of their efficacy under natural field conditions is essential to validate their practicality as a biocontrol method.

4.
Acta Pharmacol Sin ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802569

ABSTRACT

Graft-versus-host disease (GVHD), an immunological disorder that arises from donor T cell activation through recognition of host alloantigens, is the major limitation in the application of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Traditional immunosuppressive agents can relieve GVHD, but they induce serious side effects. It is highly required to explore alternative therapeutic strategy. Human amniotic epithelial stem cells (hAESCs) were recently considered as an ideal source for cell therapy with special immune regulatory property. In this study, we evaluated the therapeutic role of hAESCs in the treatment of GVHD, based on our previous developed cGMP-grade hAESCs product. Humanized mouse model of acute GVHD (aGVHD) was established by injection of huPBMCs via the tail vein. For prevention or treatment of aGVHD, hAESCs were injected to the mice on day -1 or on day 7 post-PBMC infusion, respectively. We showed that hAESCs infusion significantly alleviated the disease phenotype, increased the survival rate of aGVHD mice, and ameliorated pathological injuries in aGVHD target organs. We demonstrated that hAESCs directly induced CD4+ T cell polarization, in which Th1 and Th17 subsets were downregulated, and Treg subset was elevated. Correspondingly, the levels of a series of pro-inflammatory cytokines were reduced while the levels of the anti-inflammatory cytokines were upregulated in the presence of hAESCs. We found that hAESCs regulated CD4+ subset polarization in a paracrine mode, in which TGFß and PGE2 were selectively secreted to mediate Treg elevation and Th1/Th17 inhibition, respectively. In addition, transplanted hAESCs preserved the graft-versus-leukemia (GVL) effect by inhibiting leukemia cell growth. More intriguingly, hAESCs infusion in HSCT patients displayed potential anti-GVHD effect with no safety concerns and confirmed the immunoregulatory mechanisms in the preclinical study. We conclude that hAESCs infusion is a promising therapeutic strategy for post-HSCT GVHD without compromising the GVL effect. The clinical trial was registered at www.clinicaltrials.gov as #NCT03764228.

6.
Redox Biol ; 73: 103184, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38718533

ABSTRACT

RATIONALE: The disruption of the balance between fatty acid (FA) uptake and oxidation (FAO) leads to cardiac lipotoxicity, serving as the driving force behind diabetic cardiomyopathy (DbCM). Sirtuin 5 (Sirt5), a lysine de-succinylase, could impact diverse metabolic pathways, including FA metabolism. Nevertheless, the precise roles of Sirt5 in cardiac lipotoxicity and DbCM remain unknown. OBJECTIVE: This study aims to elucidate the role and underlying mechanism of Sirt5 in the context of cardiac lipotoxicity and DbCM. METHODS AND RESULTS: The expression of myocardial Sirt5 was found to be modestly elevated in diabetic heart failure patients and mice. Cardiac dysfunction, hypertrophy and lipotoxicity were exacerbated by ablation of Sirt5 but improved by forced expression of Sirt5 in diabetic mice. Notably, Sirt5 deficiency impaired FAO without affecting the capacity of FA uptake in the diabetic heart, leading to accumulation of FA intermediate metabolites, which mainly included medium- and long-chain fatty acyl-carnitines. Mechanistically, succinylomics analyses identified carnitine palmitoyltransferase 2 (CPT2), a crucial enzyme involved in the reconversion of fatty acyl-carnitines to fatty acyl-CoA and facilitating FAO, as the functional succinylated substrate mediator of Sirt5. Succinylation of Lys424 in CPT2 was significantly increased by Sirt5 deficiency, leading to the inactivation of its enzymatic activity and the subsequent accumulation of fatty acyl-carnitines. CPT2 K424R mutation, which mitigated succinylation modification, counteracted the reduction of enzymatic activity in CPT2 mediated by Sirt5 deficiency, thereby attenuating Sirt5 knockout-induced FAO impairment and lipid deposition. CONCLUSIONS: Sirt5 deficiency impairs FAO, leading to cardiac lipotoxicity in the diabetic heart through the succinylation of Lys424 in CPT2. This underscores the potential roles of Sirt5 and CPT2 as therapeutic targets for addressing DbCM.

7.
Acta Pharmacol Sin ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760544

ABSTRACT

Cardiac fibrosis is a detrimental pathological process, which constitutes the key factor for adverse cardiac structural remodeling leading to heart failure and other critical conditions. Circular RNAs (circRNAs) have emerged as important regulators of various cardiovascular diseases. It is known that several circRNAs regulate gene expression and pathological processes by binding miRNAs. In this study we investigated whether a novel circRNA, named circNSD1, and miR-429-3p formed an axis that controls cardiac fibrosis. We established a mouse model of myocardial infarction (MI) for in vivo studies and a cellular model of cardiac fibrogenesis in primary cultured mouse cardiac fibroblasts treated with TGF-ß1. We showed that miR-429-3p was markedly downregulated in the cardiac fibrosis models. Through gain- and loss-of-function studies we confirmed miR-429-3p as a negative regulator of cardiac fibrosis. In searching for the upstream regulator of miR-429-3p, we identified circNSD1 that we subsequently demonstrated as an endogenous sponge of miR-429-3p. In MI mice, knockdown of circNSD1 alleviated cardiac fibrosis. Moreover, silence of human circNSD1 suppressed the proliferation and collagen production in human cardiac fibroblasts in vitro. We revealed that circNSD1 directly bound miR-429-3p, thereby upregulating SULF1 expression and activating the Wnt/ß-catenin pathway. Collectively, circNSD1 may be a novel target for the treatment of cardiac fibrosis and associated cardiac disease.

8.
ACS Nano ; 18(20): 13266-13276, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38709874

ABSTRACT

One key challenge in postoperative glioblastoma immunotherapy is to guarantee a potent and durable T-cell response, which is restricted by the immunosuppressive microenvironment within the lymph nodes (LNs). Here, we develop an in situ sprayed exosome-cross-linked gel that acts as an artificial LN structure to directly activate the tumor-infiltrating T cells for prevention of glioma recurrence. Briefly, this gel is generated by a bio-orthogonal reaction between azide-modified chimeric exosomes and alkyne-modified alginate polymers. Particularly, these chimeric exosomes are generated from dendritic cell (DC)-tumor hybrid cells, allowing for direct and robust T-cell activation. The gel structure with chimeric exosomes as cross-linking points avoids the quick clearance by the immune system and thus prolongs the durability of antitumor T-cell immunity. Importantly, this exosome-containing immunotherapeutic gel provides chances for ameliorating functions of antigen-presenting cells (APCs) through accommodating different intracellular-acting adjuvants, such as stimulator of interferon genes (STING) agonists. This further enhances the antitumor T-cell response, resulting in the almost complete elimination of residual lesions after surgery. Our findings provide a promising strategy for postsurgical glioma immunotherapy that warrants further exploration in the clinical arena.


Subject(s)
Exosomes , Glioblastoma , Immunotherapy , Lymph Nodes , Exosomes/chemistry , Glioblastoma/therapy , Glioblastoma/immunology , Glioblastoma/pathology , Humans , Lymph Nodes/immunology , Lymph Nodes/pathology , Animals , Mice , Gels/chemistry , Dendritic Cells/immunology , T-Lymphocytes/immunology , Cell Line, Tumor , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Mice, Inbred C57BL
9.
Sci Total Environ ; 938: 173389, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38810743

ABSTRACT

Climate change has profoundly affected the synchrony of tree growth at multiple scales, thereby altering the structure and function of forest ecosystems. The Asian boreal forests extend southward to the Greater Khingan Range in northeast China. Given the ecological importance and susceptibility to climate change, the impacts of warming on this marginal forest community have been extensively investigated. Nonetheless, how tree growth synchrony changes across this region remains less understood. Focusing on this knowledge gap, we compiled a contiguously-distributed tree-ring network, containing 18 sampling populations and 475 individual larch trees, to explore the changes in multiple-scale growth synchrony across this region. We found increasing growth synchrony at both the individual and population levels over the past decades. The increasing trend of the regional inter-population growth synchrony was well in line with the increasing temperature and PDSI. Furthermore, 11 of the 18 sampling populations showed significant increases in their intra-population growth synchrony. We further associated the sliding intra-population growth synchrony with local climates. Intra-population growth synchrony of 13 and 11 sampling populations were significantly positively correlated with local temperature, and negatively correlated with local PDSI, respectively, demonstrating the driving role of warming-induced drought on growth synchrony. The linear regression model quantifying this relationship suggested that an increase of 1 °C in annual mean temperature would drive the intra-population growth synchrony to increase by 0.047. As warming trends in the study area are projected to continue over this century, our study warns of the further consequences of the increasing growth synchrony may have on the functioning, resilience, and persistence of forests.

10.
Article in English | MEDLINE | ID: mdl-38702157

ABSTRACT

Introduction: Preeclampsia (PE) is a fundamental cause of preterm labor, intrauterine growth restriction, and persistent postpartum hypertension. In the present study, we aimed to investigate the correlation between 24-h urinary protein excretion, serum markers, and placental growth factor and their adverse pregnancy outcomes in patients with PE. Methods: A total of 126 pregnant women with PE (86 cases of mild PE and 40 cases of severe PE, assigned to the observation group) who came to our hospital from March 2019 to December 2021 for regular obstetric checkups and delivery were selected, with 60 healthy pregnant women assigned to the control group. Routine biochemical parameters, 24-h urinary protein quantification, serum parameters, and placental growth factor levels were recorded. The incidence of adverse neonatal pregnancy outcomes and abnormal fetal heart monitoring, neonatal body mass, 1 min Apgar score, and other adverse pregnancy outcomes were also analyzed in the different groups. Results: In comparison with healthy pregnant subjects, PE patients had earlier delivery gestational weeks (P < .05), significantly higher systolic blood pressure (SBP), diastolic blood pressure (DBP), 24-h urinary protein excretion, total cholesterol (TC), triglyceride (TG), D-Dimer and human chorionic gonadotropin (ß-hCG) levels (P < .05), lower albumin (ALB), platelet count, pregnant associated plasma protein A (PAPP-A) and placental growth factor (PLGF) (P < .05), and higher incidence of maternal and perinatal adverse outcomes (P < .05). Conclusions: Combined screening of 24-h urinary protein, PAPP-A, ß-hCG, PLGF, and serum indicators in early pregnancy are essential in predicting PE, allowing timely assessment of the risk of adverse pregnancy, and providing a basis for clinical intervention.

11.
Infect Drug Resist ; 17: 1643-1652, 2024.
Article in English | MEDLINE | ID: mdl-38707989

ABSTRACT

Purpose: The isolation rate of carbapenem-resistant Enterobacter cloacae complex (CREC) is continuously increasing. The aims of this study were to investigate the molecular characteristics and risk factors associated with CREC infections. Methods: Bacterial species were identified using the matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) (Bruker Daltonik GmbH, Bremen, Germany), and the hsp60 gene was utilized for further typing. Antimicrobial susceptibilities were assessed through the MicroScan WalkAway 96 Plus system (Siemens, Germany) and the microbroth dilution method. Antimicrobial resistance genes were screened through polymerase chain reaction (PCR), while the homologous relationship was assessed using multilocus sequence typing (MLST). Conjugation experiments were performed to verify whether the plasmid could be transferred. Additionally, logistic regression model was employed to analyze risk factors for CREC infections. Results: 32 strains of CREC bacteria were isolated during the study, yet only 20 were retained for preservation. While the isolates demonstrated resistance to the majority of antibiotics, they exhibited high sensitivity to polymyxin B and tigecycline. All isolates carried the blaNDM resistance gene, including 13 blaNDM-1 isolates and 7 blaNDM-5 isolates. MLST homology analysis revealed the presence of seven known ST types and one new ST type. Conjugation experiments confirmed that 13 isolates were capable of transferring the blaNDM resistance gene to Escherichia coli strain EC600. Single-factor analysis identified multiple primary risk factors for CREC infection, but multivariate analysis did not reveal independent risk factors. Conclusion: This study investigates the molecular characteristics and risk factors associated with CREC infections. The detection rate of CREC strains in our hospital is continuously rising and homology analysis suggested that strains might spread in our hospital, emphasizing the importance of implementing effective preventive measures to control the horizontal transmission of plasmid-mediated antimicrobial resistance genes.

12.
Heliyon ; 10(7): e28636, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38576577

ABSTRACT

The root of Angelica sinensis is utilized in Traditional Chinese medicine to enhance blood replenishment and facilitate blood circulation. The early bolting and flowering (EBF) of A. sinensis, however, compromises the quality of the roots and restricts the yield of medicinal substances. The study was conducted to compare the transcriptomic and metabolomic profiles between EBF plants and normal plants of two cultivars of A. sinensis, followed by validation of the transcriptome results using qRT-PCR. There were 3677 DEGs in EBF plants compared to normal plants of cultivar 2 (Mingui No.2), and cultivar 4 (Mingui No.4) was 3354. The main differential metabolites in the EBF and normal plants were phenolic acids, flavonoids, lignans, and coumarins. The analysis of 5 EBF-related pathways revealed 28 genes exhibiting differential expression and 5 metabolites showing differential accumulation. The expression of the Lhcb5, Lhcb2, Lhcb6, Lhcb1, Lhca4, ATPG1, EGLC, CELB, AMY, glgA, CYCD3, SnRK2, PYL, AHK2, AUX1, BSK, FabI/K, ACACA and FabV decreased and the expression of the PsbR, PsbA, LHY, FT, CO, malQ, HK, GPI and DELLA increased in EBF plants. In addition, the Abscisic acid, d-Glucose-6P, α-d-Glucose-1P, NADP+, and ADP were more significantly enriched in EBF plants. The findings offer novel perspectives on the EBF mechanisms in A. sinensis and other medicinal plants of the Apiaceae family.

14.
Int Urol Nephrol ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613663

ABSTRACT

PURPOSE: The suburethral sling procedure has been widely used as the first-line treatment for female stress urinary incontinence (SUI). This study retrospectively compared the long-term surgical outcomes and complications between retropubic and transobturator suburethral sling procedures. METHODS: From 2010 to 2022, a total of 533 women with SUI underwent retropubic pubovaginal sling (PVS) or transobturator tape (TOT) procedures using a synthetic polypropylene mesh with or without concomitant anterior colporrhaphy. All patients underwent preoperative videourodynamic studies, Valsalva leak point pressure (VLPP), and voiding efficiency (VE). The success rate, postoperative complications, overactive bladder symptoms, transvaginal urethrolysis, and repeat procedures were compared among different surgical procedures. RESULTS: Among the patients, PVS was performed in 251 (47.1%) patients and with colporrhaphy in 58 (10.9%), TOT in 174 (32.6%) and with colporrhaphy in 50 (9.4%). The success rate was 87.4% in the PVS group and 75.4% in the TOT group, with or without colporrhaphy (p = 0.001). Urethrolysis was performed in 4.7% of the patients, and repeat suburethral sling procedures were performed in 8.3%. The overall success rate was significantly lower in TOT group, either with high or low VLPP, or with high or low VE. The rate of persistent OAB was significantly higher in TOT group regardless of VLPP or VE, whereas patients with VE < 90% at baseline had a significantly higher rate of postoperative dysuria. CONCLUSION: TOT procedures had an inferior long-term success rate than PVS procedures for female SUI. Additionally, no differences in the success rate were observed between patients with different bladder functions, high or low VLPP, and high or low VE.

15.
Adv Sci (Weinh) ; : e2400967, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38626379

ABSTRACT

Recently, the altermagnetic materials with spin splitting effect (SSE), have drawn significant attention due to their potential to the flexible control of the spin polarization by the Néel vector. Here, the direct and inverse altermagnetic SSE (ASSE) in the (101)-oriented RuO2 film with the tilted Néel vector are reported. First, the spin torque along the x-, y-, and z-axis is detected from the spin torque-induced ferromagnetic resonance (ST-FMR), and the z-spin torque emerges when the electric current is along the [010] direction, showing the anisotropic spin splitting of RuO2. Further, the current-induced modulation of damping is used to quantify the damping-like torque efficiency (ξDL) in RuO2/Py, and an anisotropic ξDL is obtained and maximized for the current along the [010] direction, which increases with the reduction of the temperature, indicating the present of ASSE. Next, by way of spin pumping measurement, the inverse altermagnetic spin splitting effect (IASSE) is studied, which also shows a crystal direction-dependent anisotropic behavior and temperature-dependent behavior. This work gives a comprehensive study of the direct and inverse ASSE effects in the altermagnetic RuO2, inspiring future altermagnetic materials and devices with flexible control of spin polarization.

16.
Sci Rep ; 14(1): 9783, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684694

ABSTRACT

The subfamily Polygonoideae encompasses a diverse array of medicinal and horticultural plants that hold significant economic value. However, due to the lack of a robust taxonomy based on phylogenetic relationships, the classification within this family is perplexing, and there is also a scarcity of reports on the chloroplast genomes of many plants falling under this classification. In this study, we conducted a comprehensive analysis by sequencing and characterizing the complete chloroplast genomes of six Polygonoideae plants, namely Pteroxygonum denticulatum, Pleuropterus multiflorus, Pleuropterus ciliinervis, Fallopia aubertii, Fallopia dentatoalata, and Fallopia convolvulus. Our findings revealed that these six plants possess chloroplast genomes with a typical quadripartite structure, averaging 162,931 bp in length. Comparative chloroplast analysis, codon usage analysis, and repetitive sequence analysis demonstrated a high level of conservation within the chloroplast genomes of these plants. Furthermore, phylogenetic analysis unveiled a distinct clade occupied by P. denticulatum, while P. ciliinrvis displayed a closer relationship to the three plants belonging to the Fallopia genus. Selective pressure analysis based on maximum likelihood trees showed that a total of 14 protein-coding genes exhibited positive selection, with psbB and ycf1 having the highest number of positive amino acid sites. Additionally, we identified four molecular markers, namely petN-psbM, psal-ycf4, ycf3-trnS-GGA, and trnL-UAG-ccsA, which exhibit high variability and can be utilized for the identification of these six plants.


Subject(s)
Genome, Chloroplast , Phylogeny , Genome, Chloroplast/genetics , Selection, Genetic , Genetic Markers , Asteraceae/genetics , Asteraceae/classification , Evolution, Molecular , Codon Usage
17.
Tzu Chi Med J ; 36(2): 110-119, 2024.
Article in English | MEDLINE | ID: mdl-38645782

ABSTRACT

A precision diagnosis of lower urinary tract dysfunctions (LUTD) such as bladder outlet obstruction, detrusor overactivity (DO), interstitial cystitis/bladder pain syndrome (IC/BPS), dysfunctional voiding (DV), or detrusor underactivity (DU) needs invasive videourodynamic study. Exploring non-invasive tools to help screening LUTD is necessary for clinicians in their daily practice. This article reviews recently clinical studies of using urinary inflammatory proteins and oxidative stress biomarkers in the identification of specific LUTD among men and women with lower urinary tract symptoms (LUTS). Some important findings have been reported: (1) Using urine chemokines CXCL-1 and interleukin-8 (IL-8), we may discriminate overactive bladder (OAB) symptoms in women between DO and urinary tract infection. (2) Urinary levels of oxidative stress biomarkers such as 8-hydroxydeoxyguanosine (8-OHdG) and 8-isoprostane have a potential being used as a tool to identify women with mixed DO and stress urinary incontinence. (3) Urine levels of total antioxidant capacity (TAC), and prostaglandin E2 (PGE2) are positively correlated with voiding detrusor pressure in patients with DU. (4) Urine levels of brain-derived neurotrophic factor (BDNF) and PGE2 were significantly higher in the DU patients with detrusor function recovery. (5) Women with DV had higher urinary levels of tumor necrosis factor-alpha (TNF-α) and 8-OHdG, and urinary IL-2 level was significantly lower. (6) Urine level of 8-isoprostane was higher in the patients with idiopathic DO and neurogenic DO. (7) Higher urine cytokine levels of monocyte chemoattractant protein-1 (MCP-1), regulated on activation, normal T-cell expressed and secreted (RANTES), CXCL-10, IL-7, and eotaxin-1 in patients with IC/BPS than controls. (8) The urine levels of IL-8, CXCL-10, BDNF, IL-6, and RANTES were significantly higher in patients with Hunner's IC than non-Hunner's IC. (9) Male patients with IC/BPS had a significantly higher level of eotaxin, MCP-1, TNF-α, 8-OHdG, and TAC. Combining a higher eotaxin and a higher TNF-α can provide a satisfactory diagnostic value in discriminating IC/BPS from other LUTD in men. These studies provide evidence that measurement of cluster of urine biomarkers could be used as a diagnostic tool to differentiate different LUTD in patients with similar LUTS.

18.
J Asthma ; : 1-10, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38634666

ABSTRACT

OBJECTIVE: The prevalence of asthma has gradually increased worldwide in recent years, which has made asthma a global public health problem. However, due to its complexity and heterogeneity, there are a few academic debates on the pathogenic mechanism of asthma. The study of the pathogenesis of asthma through metabolomics has become a new research direction. We aim to uncover the metabolic pathway of children with asthma. METHODS: Liquid chromatography (LC)-mass spectrometry (MS)-based metabolomic analysis was conducted to compare urine metabolic profiles between asthmatic children (n = 30) and healthy controls (n = 10). RESULTS: Orthogonal projections to latent structures-discrimination analysis (OPLS-DA) showed that there were significant differences in metabolism between the asthma group and the control group with three different metabolites screened out, including traumatic acid, dodecanedioic acid, and glucobrassicin, and the levels of traumatic acid and dodecanedioic acid in the urine samples of asthmatic children were lower than those of healthy controls therein. Pathway enrichment analysis of differentially abundant metabolites suggested that α-linolenic acid metabolism was an asthma-related pathway. CONCLUSIONS: This study suggests that there are significant metabolic differences in the urine of asthmatic children and healthy controls, and α-linolenic acid metabolic pathways may be involved in the pathogenesis of asthma.

19.
Int J Biol Macromol ; 268(Pt 2): 130853, 2024 May.
Article in English | MEDLINE | ID: mdl-38570000

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) is a complex vascular disorder, characterized by pulmonary vessel remodeling and perivascular inflammation. Pulmonary arterial smooth muscle cells (PASMCs) pyroptosis is a novel pathological mechanism implicated of pulmonary vessel remodeling. However, the involvement of circRNAs in the process of pyroptosis and the underlying regulatory mechanisms remain inadequately understood. METHODS: Western blotting, PI staining and LDH release were used to explore the role of circLrch3 in PASMCs pyroptosis. Moreover, S9.6 dot blot and DRIP-PCR were used to assess the formation of R-loop between circLrch3 and its host gene Lrch3. Chip-qPCR were used to evaluate the mechanism of super enhancer-associated circLrh3, which is transcriptionally activated by the transcription factor Tbx2. RESULTS: CircLrch3 was markedly upregulated in hypoxic PASMCs. CircLrch3 knockdown inhibited hypoxia induced PASMCs pyroptosis in vivo and in vitro. Mechanistically, circLrch3 can form R-loop with host gene to upregulate the protein and mRNA expression of Lrch3. Furthermore, super enhancer interacted with the Tbx2 at the Lrch3 promoter locus, mediating the augmented transcription of circLrch3. CONCLUSION: Our findings clarify the role of a super enhancer-associated circLrch3 in the formation of R-loop with the host gene Lrch3 to modulate pyroptosis in PASMCs, ultimately promoting the development of PH.


Subject(s)
Myocytes, Smooth Muscle , Pulmonary Artery , Pyroptosis , RNA, Circular , Pyroptosis/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , Animals , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Myocytes, Smooth Muscle/metabolism , Rats , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Cell Hypoxia/genetics , Muscle, Smooth, Vascular/metabolism , Male , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Gene Expression Regulation , Enhancer Elements, Genetic/genetics , Hypoxia/genetics , Hypoxia/metabolism , Super Enhancers
20.
New Phytol ; 242(5): 2059-2076, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38650352

ABSTRACT

Wide variation in amenability to transformation and regeneration (TR) among many plant species and genotypes presents a challenge to the use of genetic engineering in research and breeding. To help understand the causes of this variation, we performed association mapping and network analysis using a population of 1204 wild trees of Populus trichocarpa (black cottonwood). To enable precise and high-throughput phenotyping of callus and shoot TR, we developed a computer vision system that cross-referenced complementary red, green, and blue (RGB) and fluorescent-hyperspectral images. We performed association mapping using single-marker and combined variant methods, followed by statistical tests for epistasis and integration of published multi-omic datasets to identify likely regulatory hubs. We report 409 candidate genes implicated by associations within 5 kb of coding sequences, and epistasis tests implicated 81 of these candidate genes as regulators of one another. Gene ontology terms related to protein-protein interactions and transcriptional regulation are overrepresented, among others. In addition to auxin and cytokinin pathways long established as critical to TR, our results highlight the importance of stress and wounding pathways. Potential regulatory hubs of signaling within and across these pathways include GROWTH REGULATORY FACTOR 1 (GRF1), PHOSPHATIDYLINOSITOL 4-KINASE ß1 (PI-4Kß1), and OBF-BINDING PROTEIN 1 (OBP1).


Subject(s)
Genome-Wide Association Study , Plant Growth Regulators , Populus , Populus/genetics , Plant Growth Regulators/metabolism , Gene Regulatory Networks , Epistasis, Genetic , Genes, Plant , Gene Expression Regulation, Plant , Phenotype , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...