Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
2.
Food Chem ; 452: 139501, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38728887

ABSTRACT

To clarify the change mechanism of biological activity and physicochemical characteristics in Lacticaseibacillus paracasei JY025 fortified milk powder (LFMP) during storage, morphological observation, JY025 survival, storage stability, and metabolomics of LFMP were determined during the storage period in this study. The results showed that the LFMP had a higher survival rate of JY025 compared with the bacterial powder of JY025 (LBP) during storage, which suggested that milk powder matrix could reduce strain JY025 mortality under prolonged storage in the LFMP samples. The fortification of strain JY025 also affected the stability of milk powder during the storage period. There was lower water activity and higher glass transition temperature in LFMP samples compared with blank control milk powder (BCMP) during storage. Moreover, the metabolomics results of LFMP indicated that vitamin degradation, Maillard reaction, lipid oxidation, tricarboxylic acid cycle, and lactobacilli metabolism are interrelated and influence each other to create complicated metabolism networks.


Subject(s)
Food Storage , Lacticaseibacillus paracasei , Milk , Powders , Animals , Milk/chemistry , Milk/metabolism , Lacticaseibacillus paracasei/metabolism , Lacticaseibacillus paracasei/growth & development , Lacticaseibacillus paracasei/chemistry , Powders/chemistry , Food, Fortified/analysis
3.
J Hazard Mater ; 471: 134323, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38640680

ABSTRACT

Sensitive detection and point-of-care test of bacterial pathogens is of great significance in safeguarding the public health worldwide. Inspired by the characteristics of horseradish peroxidase (HRP), we synthesized a hybrid nanoflower with peroxidase-like activity via a three-component self-assembled strategy. Interestingly, the prepared nanozyme not only could act as an alternative to HRP for colorimetric biosensing, but also function as a unique signal probe that could be recognized by a pregnancy test strip. By combining the bifunctional properties of hybrid nanoflower, isothermal amplification of LAMP, and the specific recognition and non-specific cleavage properties of CRISPR/Cas12a system, the dual-readout CRISPR/Cas12a biosensor was developed for sensitive and rapid detection of Salmonella enterica. Moreover, this platform in the detection of Salmonella enterica had limits of detection of 1 cfu/mL (colorimetric assay) in the linear range of 101-108 cfu/mL and 102 cfu/mL (lateral flow assay) in the linear range of 102-108 cfu/mL, respectively. Furthermore, the developed biosensor exhibited good recoveries in the spiked samples (lake water and milk) with varying concentrations of Salmonella enterica. This work provides new insights for the design of multifunctional nanozyme and the development of innovative dual-readout CRISPR/Cas system-based biosensing platform for the detection of pathogens.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Salmonella enterica , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Biosensing Techniques/methods , Milk/microbiology , Nucleic Acid Amplification Techniques/methods , Nanostructures/chemistry , Colorimetry/methods , Animals , Limit of Detection , Molecular Diagnostic Techniques
4.
Int J Food Microbiol ; 417: 110705, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38640815

ABSTRACT

The effect of a casein hydrolysate (CH) on the fermentation and quality of a naturally-fermented buckwheat sourdough (NFBS) were investigated, through assessing the fermentation characteristics, carbohydrate and protein degradation, texture, and bacterial composition of NFBS. According to the assaying data, CH might both increase the amount of lactic acid bacteria by 2.62 % and shorten the fermentation period by at least 3 h, subsequently leading to enhanced degradation of carbohydrate and protein, accompanied by a softer texture. More importantly, CH increased the relative abundance of lactobacillus in NFBS, making it the dominant bacterial genus and inhibited the growth of spoilage bacteria. In addition, Spearman correlation analysis indicated that the pH value, lactic and acetic acid contents, carbohydrates, protease activity, and these textural indices like hardness, elasticity, and adhesion had a positive/negative correlation with the bacterial composition of NFBS (Spearman correlation coefficient: -0.93-0.95). CH was thus regarded to be helpful to NFBS processing and production mainly by shortening its fermentation time, improving its fermentation performance, causing a finer texture and microstructure, and changing bacterial composition.


Subject(s)
Bread , Caseins , Fagopyrum , Fermentation , Fagopyrum/chemistry , Bread/microbiology , Caseins/metabolism , Food Microbiology , Lactobacillus/metabolism , Lactobacillus/growth & development , Hydrogen-Ion Concentration , Bacteria/metabolism , Bacteria/growth & development , Fermented Foods/microbiology
5.
Talanta ; 274: 125930, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38537346

ABSTRACT

Salmonella typhimurium, as a major foodborne pathogen, poses a serious threat to public health safety worldwide. Here, we present a colorimetric biosensor based on aptamer recognition-induced multi-DNA release and peroxidase-mimicking three-way junction DNA-silver/platinum bimetallic nanoclusters (3WJ/DNA-Ag/PtNCs) for the detection of S. typhimurium. In this method, S. typhimurium specifically binds to the aptamer and releases multiple cDNAs to form the three-way junction DNA structure and synthesize silver/platinum bimetallic nanoclusters, which induces signaling changes. Interestingly and importantly, the use of 3WJ/DNA as the template for synthesizing Ag/PtNCs gives the method an extremely low background signal. Under the optimal conditions, the constructed biosensor had a linear response range of 2.6 × 102-2.6 × 106 CFU/mL and a detection limit of 2.6 × 102 CFU/mL for the detection of S. typhimurium. In addition, the proposed method can effectively detect S. typhimurium in milk.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Colorimetry , Metal Nanoparticles , Platinum , Salmonella typhimurium , Silver , Salmonella typhimurium/isolation & purification , Biosensing Techniques/methods , Aptamers, Nucleotide/chemistry , Colorimetry/methods , Platinum/chemistry , Silver/chemistry , Metal Nanoparticles/chemistry , Milk/microbiology , Milk/chemistry , Limit of Detection , DNA/chemistry , Animals , Peroxidase/chemistry , Peroxidase/metabolism
6.
Front Microbiol ; 15: 1314362, 2024.
Article in English | MEDLINE | ID: mdl-38351917

ABSTRACT

Powdered infant formula (PIF) is prone to Cronobacter sakazakii (C. sakazakii) contamination, which can result in infections that endanger the lives of newborns and infants. Slightly acidic electrolytic water (SAEW) has shown antibacterial effects on a variety of foodborne pathogens and has a wide applicability in the food industry. Here, the antibacterial activity of SAEW against C. sakazakii and its use as a disinfectant on contact surfaces with high infection transmission risk were investigated. The inactivation of SAEW on C. sakazakii was positively correlated to the SAEW concentration and treatment time. The antibacterial effect of SAEW was achieved by decreasing the intracellular adenosine triphosphate (ATP), K+, protein, and DNA contents of C. sakazakii, reducing the intracellular pH (pHin) and destroying the cell morphology, which led to inactivation of C. sakazakii ultimately. To test the applicability of this study, the results showed that approximately 103 CFU/cm2 of C. sakazakii were successfully inactivated on stainless steel and rubber surfaces after a 30 mg/L SAEW treatment for 20 s. These results indicate the antibacterial mechanism and potential application of SAEW against C. sakazakii, as well as a new strategy for the prevention and control of C. sakazakii on stainless steel and rubber surfaces.

7.
Food Chem X ; 21: 101186, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38357374

ABSTRACT

Pickering emulsions prepared from protein-polysaccharide complexes have attracted increasing attention. In this study, whey protein isolates (WPI) were modified with oligochitosan using transglutaminase (TGase)-type to fabricate Pickering emulsions, and loaded with curcumin. The curcumin/protein ratio of 1:25 and oil phase fraction (φ = 17 %) are the most optimal condition for emulsions stabilization, and particle size of glycosylated WPI emulsion was 31.70 µm. Glycosylated WPI emulsion had the highest encapsulation efficiency (96.64 %) of curcumin. Microstructure analysis showed that glycosylated WPI had small droplets covered by dense interface layers. The modified WPI emulsions exhibited optimal emulsifying properties and emulsion stability, which effectively inhibited the premature water-oil stratification in emulsion. In vitro digestion results showed that WPI-oligochitosan complexes enhanced curcumin bioaccessibility (40.34 %). The antioxidant activity of glycosylated WPI emulsions was significantly increased. The results of this study provide helpful references for applying glycosylated WPI-stabilized Pickering emulsions, which can be used as transport carriers of curcumin.

8.
Nutrients ; 16(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38398845

ABSTRACT

The aim of this study was to investigate the immunomodulatory effects of A2 ß-casein (ß-CN) in cyclophosphamide-induced immunosuppressed BALB/c mice. Experiments conducted in vitro revealed that A2 ß-CN digestive products have potent immunostimulatory activities. Animal studies demonstrated that A2 ß-CN improved the immunological organ index reduction trend caused by cyclophosphamide, reduced the pathological damage to the spleen tissue in immunosuppressed mice, increased the release of IL-17A, IgG, and IgA, and reduced the production of IL-4. By regulating the relative abundance of advantageous bacteria like Oscillospira, Lactobacillus, and Bifidobacteria and harmful bacteria like Coprococcus and Desulfovibrionaceae, A2 ß-CN improved gut microbiota disorders in immunosuppressed mice. Moreover, A2 ß-CN promoted the production of short-chain fatty acids and increased the diversity of the gut microbiota. Therefore, ingestion of A2 ß-CN is beneficial to the host's immune system and gut health. These findings provide insights for the future application of A2 ß-CN-related dairy products.


Subject(s)
Caseins , Gastrointestinal Microbiome , Animals , Mice , Caseins/pharmacology , Gastrointestinal Microbiome/physiology , Immunity , Fatty Acids, Volatile , Cyclophosphamide/pharmacology
9.
Nutrients ; 16(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38257160

ABSTRACT

Glycolipid metabolic disorders (GLMD) refer to a series of metabolic disorders caused by abnormal processes of glucose and lipid synthesis, decomposition, and absorption in the body, leading to glucose and lipid excess, insulin resistance, and obesity. Probiotic intervention is a new strategy to alleviate metabolic syndrome. Lactobacillus paracasei JY062 (L. paracasei JY062) was separated from the Tibet-fermented dairy products. The results demonstrated a strong ability to relieve blood glucose disorders, blood lipid disorders, and tissue damage. The LPH group had the best effect, significantly decreasing the total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), leptin, insulin, and free fatty acid (FFA) concentrations and increasing the high-density lipoprotein cholesterol, adiponectin, and GLP-1 level compared to HFD-group mice. L. paracasei JY062 could activate the APN-AMPK pathway, increased AdipoQ, AMPK GLUT-4, and PGC-1α mRNA expression and decreased SREBP-1c, ACC, and FAS mRNA expression. L. paracasei JY062 intervention decreased the relative abundance of harmful bacteria, increased the relative abundance of beneficial bacteria, and restored the imbalance of gut microbiota homeostasis caused by a high-glucose-fat diet. L. paracasei JY062 alleviated glucolipid metabolism disorders via the adipoinsular axis and gut microbiota. This study provided a theoretical basis for probiotics to ameliorate glucolipid metabolism disorders by regulating the adipoinsular axis.


Subject(s)
Gastrointestinal Microbiome , Lacticaseibacillus paracasei , Metabolic Diseases , Animals , Mice , AMP-Activated Protein Kinases , Cholesterol, HDL , Glucose , RNA, Messenger
10.
Food Chem X ; 21: 101055, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38173901

ABSTRACT

The formula of food for special medical purpose has a direct impact on physicochemical stability, especially in hot climes and high temperature transport storage environments. An accelerated test (50 °C for 7 weeks) was used to analyze the mechanism of the physicochemical instability of formula A with lactose and maltodextrin, and formula B with maltodextrin. Deep dents and wrinkles were observed on the surface of the formula B, and more fat globules covered the surface of formula A particles after storage for a long time. Significantly higher amounts of furosine and Nε-carboxymethl-l-lysine (CML) were formed and the loss of available lysine was greater in formula A than in formula B. No significant difference was observed in lipid oxidation indicators between the two formulas. The results of this research demonstrated lactose was more active than maltodextrin and led to physicochemical instability.

11.
Food Chem ; 443: 138510, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38281416

ABSTRACT

ß-casein is the second most abundant form of casein in milk. Changes in amino acid sequence at specific positions in the primary structure of ß-casein in milk will produce gene mutations that affect the physicochemical properties of dairy products and the hydrolysis site of digestive enzymes. The screening method of ß-casein allele frequency detection in dairy products also has attracted the extensive attention of scientists and farmers. The A1 and A2 ß-casein is the two usual mutation types, distinguished by histidine and proline at position 67 in the peptide chain. This paper summarizes the effects of A1 and A2 ß-casein on the physicochemical properties of dairy products and evaluates the effects on human health, and the genotyping methods were also concluded. Impressively, this review presents possible future opportunities and challenges for the promising field of A2 ß-casein, providing a valuable reference for the development of the functional dairy market.


Subject(s)
Caseins , Milk , Humans , Animals , Cattle/genetics , Caseins/metabolism , Milk/chemistry , Mutation
12.
Compr Rev Food Sci Food Saf ; 23(1): e13295, 2024 01.
Article in English | MEDLINE | ID: mdl-38284598

ABSTRACT

Food contaminants present a significant threat to public health. In response to escalating global concerns regarding food safety, there is a growing demand for straightforward, rapid, and sensitive detection technologies. Noble metal nanoclusters (NMNCs) have garnered considerable attention due to their superior attributes compared to other optical materials. These attributes include high catalytic activity, excellent biocompatibility, and outstanding photoluminescence properties. These features render NMNCs promising candidates for crafting nanosensors for food contaminant detection, offering the potential for the development of uncomplicated, swift, sensitive, user-friendly, and cost-effective detection approaches. This review investigates optical nanosensors based on NMNCs, including the synthesis methodologies of NMNCs, sensing strategies, and their applications in detecting food contaminants. Furthermore, it involves a comparative assessment of the applications of NMNCs in optical sensing and their performance. Ultimately, this paper imparts fresh perspectives on the forthcoming challenges. Hitherto, optical (particularly fluorescent) nanosensors founded on NMNCs have demonstrated exceptional sensing capabilities in the realm of food contaminant detection. To enhance sensing performance, future research should prioritize atomically precise NMNCs synthesis, augmentation of catalytic activity and optical properties, development of high-throughput and multimode sensing, integration of NMNCs with microfluidic devices, and the optimization of NMNCs storage, shelf life, and transportation conditions.


Subject(s)
Food Safety , Nanotechnology
13.
J Dairy Sci ; 107(4): 1857-1876, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37923200

ABSTRACT

Constipation is directly related to the intestinal microenvironment, in which the promotion of gastrointestinal (GI) motility and improvement of gut microbiota distribution are important for alleviating symptoms. Herein, after the intervention of probiotic fermented milk (FMMIX) containing Lacticaseibacillus paracasei JY062 and Lactobacillus gasseri JM1 for 14 d in Kunming mice with loperamide-induced constipation, the results indicated that FMMIX significantly increased the secretion of serum motilin, gastrin and 5-hydroxytryptamine, as well as decreased the secretion of peptide YY, vasoactive intestinal peptide, and nitric oxide in mice. As determined by immunohistochemical analysis, FMMIX promoted an augmentation in the quantity of Cajal interstitial cells. In addition, the mRNA and protein expression of c-kit and stem cell factor (SCF) were upregulated to facilitate intestinal motility. High-throughput sequencing and gas chromatography techniques revealed that FMMIX led to an increase in the relative abundance of beneficial bacteria (Lactobacillus, Oscillospira, Ruminococcus, Coprococcus, and Akkermansia), reduced the presence of harmful bacteria (Prevotella), and resulted in elevated levels of short-chain fatty acids (SCFA) with a superior improvement compared with unfermented milk. Untargeted metabolomics revealed significant upregulation of functional metabolites such as l-pipecolinic acid, dl-phenylalanine, and naringenin in FMMIX, presumably playing a potential role in constipation relief. Overall, our results showed that FMMIX had the potential to alleviate constipation symptoms in mice by improving the secretion of serum GI regulatory peptides and neurotransmitters, increasing the expression of c-kit and SCF proteins, and modulating the gut microbiota structure and SCFA levels, and may be associated with an increase in these functional metabolites. This suggested that FMMIX could be a promising adjunctive strategy for managing constipation symptoms and could contribute to the development of functional foods aimed at improving gut health.


Subject(s)
Gastrointestinal Microbiome , Lacticaseibacillus paracasei , Lactobacillus gasseri , Probiotics , Mice , Animals , Milk , Constipation/chemically induced , Constipation/therapy , Constipation/veterinary , Gastrointestinal Motility , Probiotics/therapeutic use , Probiotics/pharmacology
14.
Talanta ; 269: 125457, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38039678

ABSTRACT

Escherichia coli O157: H7 (E. coli O157: H7) is one of the most common foodborne pathogens and is widespread in food and the environment. Thus, it is significant for rapidly detecting E. coli O157: H7. In this study, a colorimetric aptasensor based on aptamer-functionalized magnetic beads, exonuclease III (Exo III), and G-triplex/hemin was proposed for the detection of E. coli O157: H7. The functional hairpin HP was designed in the system, which includes two parts of a stem containing the G-triplex sequence and a tail complementary to cDNA. E. coli O157: H7 competed to bind the aptamer (Apt) in the Apt-cDNA complex to obtain cDNA. The cDNA then bound to the tail of HP to trigger Exo III digestion and release the single-stranded DNA containing the G-triplex sequence. G-triplex/hemin DNAzyme could catalyze TMB to produce visible color changes and detectable absorbance signals in the presence of H2O2. Based on the optimal conditions, E. coli O157: H7 could be detected down to 1.3 × 103 CFU/mL, with a wide linear range from 1.3 × 103 to 1.3 × 107 CFU/mL. This method had a distinguished ability to non-target bacteria, which showed good specificity. In addition, the system was successfully applied to detect E. coli O157: H7 in milk samples.


Subject(s)
Aptamers, Nucleotide , DNA, Catalytic , Escherichia coli O157 , Escherichia coli O157/genetics , Hemin , Colorimetry/methods , DNA, Complementary , Hydrogen Peroxide , Aptamers, Nucleotide/genetics , Magnetic Phenomena , Food Microbiology
15.
Front Microbiol ; 14: 1292741, 2023.
Article in English | MEDLINE | ID: mdl-38075922

ABSTRACT

To investigate how casein hydrolysate affected the physicochemical properties and microbiological diversity of the glutinous rice dough (natural fermentation and yeast fermentation), we analyzed its fermentation properties, carbohydrate, protein degradation, texture, and bacterial composition. According to the findings, casein hydrolysate increased the total LAB number, as well as organic acid content, in naturally fermented and yeast fermented glutinous rice dough by 3.59 and 8.19%, respectively, and reduced the fermentation time by at least 2 h. Meanwhile, casein hydrolysate enhanced the content of reducing sugars by 4.46 and 13.53% and increased protease activity by 29.9 and 27.7%. In addition, casein hydrolysate accelerated protein breakdown and regulated the hardness of the dough to improve the texture. Casein hydrolysate enriched the bacterial richness and diversity of dough. After adding casein hydrolysate, it promoted the growth of Pediococcus, Enterococcus, Lactobacillus, and Streptococcus. According to the Spearman correlation analysis, environmental factors (pH, lactic acid, acetic acid, reducing sugar content, and protease activity) exhibited the major driver for the abundance of bacterial species (Spearman correlation coefficient: -0.71 to 0.78). As a potential food additive, casein hydrolysate can improve the fermentation and quality of glutinous rice dough, increase consumer acceptance of cereal foods, and give consumers healthier options.

16.
Nutrients ; 15(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38068829

ABSTRACT

Obesity is a chronic metabolic disease that can be induced by a high-fat diet (HFD) and predisposes to a variety of complications. In recent years, various bioactive substances, such as probiotics, prebiotics, and postbiotics, have been widely discussed because of their good anti-lipid and anti-inflammatory activities. In this paper, soybean protein isolate was used as a substrate to prepare the postbiotic. Compound prebiotics (galactose oligosaccharides, fructose oligosaccharides, and lactitol) preparation Aunulife Postbiotics and Prebiotics Composition (AYS) is the research object. Weight loss and bowel movements in mice induced by a high-fat diet were studied. Moreover, qualitative and quantitative analyses of small-molecule metabolites in AYS were performed to identify the functional molecules in AYS. After 12 weeks of feeding, the weight gain of mice that were fed with high-dose AYS (group H) and low-dose AYS (group L) from 4 to 12 weeks was 6.72 g and 5.25 g (p < 0.05), both of which were significantly lower than that of the high-fat diet (group DM, control group) group (7.73 g) (p < 0.05). Serum biochemical analysis showed that TC, TG, and LDL-C levels were significantly lower in mice from the H and L groups (p < 0.05). In addition, the fecal lipid content of mice in the L group reached 5.89%, which was significantly higher than that of the DM group at 4.02% (p < 0.05). The study showed that AYS changed the structure of the intestinal microbiota in mice on a high-fat diet, resulting in a decrease in the relative abundance of Firmicutes and Muribaculaceae and an increase in the relative abundance of Bacteroidetes, Verrucomicrobia, and Lactobacillus. The metabolomics study results of AYS showed that carboxylic acids and derivatives, and organonitrogen compounds accounted for 51.51% of the AYS metabolites, among which pantothenate, stachyose, betaine, and citrate had the effect of preventing obesity in mice. In conclusion, the administration of prebiotics and postbiotic-rich AYS reduces weight gain and increases fecal lipid defecation in obese mice, potentially by regulating the intestinal microbiota of mice on a high-fat diet.


Subject(s)
Microbiota , Prebiotics , Animals , Mice , Obesity/metabolism , Weight Gain , Oligosaccharides/pharmacology , Diet, High-Fat/adverse effects , Lipids , Mice, Inbred C57BL
17.
Food Res Int ; 174(Pt 2): 113664, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37981356

ABSTRACT

The emergence of antibiotic-resistant bacteria led to the misuse of antibiotics, resulting in the emergence of more resistant bacteria and continuous improvement in their resistance ability. Cronobacter sakazakii (C. sakazakii) has been considered a pathogen that harms infants. Incidents of C. sakazakii contamination have continued globally, several studies have indicated that C. sakazakii is increasingly resistant to antibiotics. A few studies have explored the mechanism of antibiotic resistance in C. sakazakii, and some have examined the antibiotic resistance and changes in virulence levels. We aimed to investigate the antibiotic resistance mechanism and virulence differences in C. sakazakii. The level of virulence factors of C. sakazakii was modified after induction by antibiotics compared with the antibiotic-sensitive strains, and the XS001-Ofl group had the strongest capacity to produce enterotoxin (85.18 pg/mL) and hemolysin (1.47 ng/mL). The biofilm formation capacity after induction significantly improved. The number of bases and mapped reads in all groups accounted for more than 55 % and 70 %, as detected by transcriptomic analysis. The resistance mechanism of different antibiotics was more common in efflux pumps, cationic antimicrobial peptides, and biofilm formation pathways. The level of antibiotic resistance mainly affected the expression of virulence genes associated with flagella assembly and synthesis.


Subject(s)
Cronobacter sakazakii , Humans , Infant , Cronobacter sakazakii/genetics , Virulence/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Gene Expression Profiling
18.
Food Res Int ; 173(Pt 2): 113457, 2023 11.
Article in English | MEDLINE | ID: mdl-37803782

ABSTRACT

Bacterial biofilm is a protective matrix composed of metabolites secreted by bacteria that envelop bacteria. By forming a biofilm, bacteria can considerably improve their environmental tolerance. In food-related processing environment, different types of microorganisms are often present in biofilms. The main contaminating strain in the powdered infant formula (PIF) processing environment, Cronobacter sakazakii and Staphylococcus aureus continues to pollute the PIF processing environment after biofilm production. This study selected Cronobacter sakazakii with a weak biofilm-forming ability as one of the test organisms. The coexistence of Cronobacter sakazakii and Staphylococcus aureus on the surface of production equipment was simulated to analyze the interaction. Biofilm formation in the co-culture group was significantly higher than the others. In-depth study of the effect of Staphylococcus aureus on the biofilm formation genes of Cronobacter sakazakii. Results show two bacteria can coexist on the surface of a metal device, forming a more compact hybrid biofilm structure. Under co-culture conditions, S. aureus increased bcsA and fliD expression in Cronobacter sakazakii, whereas decreased bcsC expression. Signaling molecules produced by Staphylococcus aureus (Autoinducer 2) significantly promoted the biofilm formation of Cronobacter sakazakii at the concentration of 0-500 ng/mL (0.099-0.177) and up-regulated the expression of bcsA, filD and flhD genes.


Subject(s)
Cronobacter sakazakii , Humans , Infant , Cronobacter sakazakii/metabolism , Staphylococcus aureus/genetics , Coculture Techniques , Biofilms , Infant Formula/microbiology
19.
Foods ; 12(19)2023 Oct 08.
Article in English | MEDLINE | ID: mdl-37835343

ABSTRACT

The metabolic utilization of different carbon sources by Streptococcus thermophilus JM905(S. thermophilus JM905) was determined using a high-throughput microbial phenotyping system, and changes in fermentation characteristics of S. thermophilus JM905 fermented milk were investigated at different fermentation periods, with changes in pH, water-holding capacity, viscosity, nuisance odor, and viable bacteria count being used to define the fermentation characteristics of the strain. Changes in the key metabolites, 2-hydroxybutyric acid, folic acid, L-lactic acid, D-glycerol-D-galactose-heptanol, (R)-leucine, L-aspartic acid, L-proline, D-arginine, L-isoleucine, hydra starch, L-lysine, L-tryptophan, and D-galactose, were clarified. Correspondingly, the fermented milk protein, amino acid, and fermented milk fat quality nutrient contents were determined to be 3.78 ± 0.054 g per 100 g, 3.405 ± 0.0234 g per 100 mL, and 0.161 ± 0.0030 g per 100 g, respectively. This study addressed strain carbon source utilization, changes in fermentation characteristics and metabolites during fermentation, with the aim of investigating the link between fermentation characteristics and metabolite quality components of Streptococcus thermophilus JM905 and its fermented milk with fermentation potential and to provide a useful reference for the screening of superior fermentation strains.

20.
Foods ; 12(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37893644

ABSTRACT

Ultra-high temperature sterilized milk (UHT) is a popular dairy product known for its long shelf life and convenience. However, protein gel aging and fat quality defects like creaming and flavor deterioration may arise during storage. These problems are primarily caused by thermostable enzymes produced by psychrotrophic bacteria. In this study, four representative psychrotrophic bacteria strains which can produce thermostable enzymes were selected to contaminate UHT milk artificially. After 11, 11, 13, and 17 weeks of storage, the milk samples, which were contaminated with Pseudomonas fluorescens, Chryseobacterium carnipullorum, Lactococcus raffinolactis and Acinetobacter guillouiae, respectively, demonstrated notable whey separation. The investigation included analyzing the protein and fat content in the upper and bottom layers of the milk, as well as examining the particle size, Zeta potential, and pH in four sample groups, indicating that the stability of UHT milk decreases over time. Moreover, the spoiled milk samples exhibited a bitter taste, with the dominant odor being attributed to ketones and acids. The metabolomics analysis revealed that three key metabolic pathways, namely ABC transporters, butanoate metabolism, and alanine, aspartate, and glutamate metabolism, were found to be involved in the production of thermostable enzymes by psychrotrophic bacteria. These enzymes greatly impact the taste and nutrient content of UHT milk. This finding provides a theoretical basis for further investigation into the mechanism of spoilage.

SELECTION OF CITATIONS
SEARCH DETAIL
...