Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 10565, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37386083

ABSTRACT

Novel goose astrovirus (NGAstV) is a member of the genus Avain Avastrovirus (AAstV) and the family Astroviridae. NGAstV-associated gout disease has caused huge economic losses to the goose industry worldwide. Since early 2020, NGAstV infections characterized by articular and visceral gout emerged continuously in China. Herein, we isolated a GAstV strain from goslings with fatal gout disease and sequenced its complete genome nucleotide sequence. Then we conducted systematic genetic diversity and evolutionary analysis. The results demonstrated that two genotypic species of GAstV (GAstV-I and GAstV-II) were circulating in China, and GAstV-II sub-genotype IId had become the dominant one. Multiple alignments of amino acid sequences of GAstV capsid protein revealed that several characteristic mutations (E456D, A464N, and L540Q) in GAstV-II d strains, as well as additional residues in the newly identified isolate which varied over time. These findings enrich the understanding of the genetic diversity and evolution of GAstV and may facilitate the development of effective preventive strategies.


Subject(s)
Arthritis, Gouty , Avastrovirus , Gout , Animals , Geese , Avastrovirus/genetics , Genomics , Gout/genetics , Gout/veterinary , China
2.
J Fish Dis ; 46(5): 545-561, 2023 May.
Article in English | MEDLINE | ID: mdl-36861816

ABSTRACT

Aeromonas salmonicida has long been known as psychrophiles since it is mainly isolated from cold water fish, and recent reports have revealed the existence of mesophilic strains isolated from warm sources. However, the genetic differences between mesophilic and psychrophilic strains remain unclear due to few complete genomes of mesophilic strain are available. In this study, six A. salmonicida (2 mesophilic and 4 psychrophilic) were genome-sequenced, and comparative analyses of 25 A. salmonicida complete genomes were conducted. The ANI values and phylogenetic analysis revealed that 25 strains formed three independent clades, which were referred as typical psychrophilic, atypical psychrophilic and mesophilic groups. Comparative genomic analysis showed that two chromosomal gene clusters, related to lateral flagella and outer membrane proteins (A-layer and T2SS proteins), and insertion sequences (ISAs4, ISAs7 and ISAs29) were unique to the psychrophilic groups, while the complete MSH type IV pili were unique to the mesophilic group, all of which may be considered as lifestyle-related factors. The results of this study not only provide new insights into the classification, lifestyle adaption and pathogenic mechanism of different strains of A. salmonicida, but also contributes to the prevention and control of disease caused by psychrophilic and mesophilic A. salmonicida.


Subject(s)
Aeromonas salmonicida , Aeromonas , Fish Diseases , Animals , Temperature , Phylogeny , Genomics
3.
Transbound Emerg Dis ; 69(3): 1046-1055, 2022 May.
Article in English | MEDLINE | ID: mdl-33687791

ABSTRACT

Astroviruses are a non-enveloped virus with large host range breadth. AstV-associated gastroenteritis in human and animal, nephritis in chicken, gout in gosling and hepatitis in duckling pose great threats to public health and poultry industry. Since early 2020, continuous emergence of fatal goose astrovirus (GAstV) infections characterized by articular and visceral gout was reported in China. Here, we described two outbreaks of emerging gout disease in two different goose farms of central China. Two virulent GAstV strains, designated as HNKF-1/China/2020 and HNSQ-6/China/2020, were isolated, and the fifth passage of the isolates could cause urate crystals accumulated in the allantoic fluid and even deposited around great vessels and embryo bodies. Meanwhile, the source of these GAstV outbreaks was tracked to goose hatcheries. The prevalence of GAstV in the goose embryos with hatch failure was confirmed, and embryo-origin HNXX-6/China/2020 was further isolated. The complete genome of these three newly isolates was then sequenced and analysed. The results showed that Chinese GAstVs have formed two distinct groups, and the three GAstV isolates, as well as most of the Chinese GAstVs, belong to the G-I group. There are several amino acid mutations in the three newly identified GAstVs, such as A520T, S535R, V555I and A782T in ORF1a and Q229P in ORF2, suggesting the field stains, HNKF-1/China/2020 and HNSQ-6/China/2020, might derive from the weak goose embryo via vertical transmission. Moreover, the phylogenetic analysis of the complete viral genome and individual viral proteins revealed that Chinese GAstV strains have been constantly evolving towards more complicated and various directions. Our study reported the recently emerging GAstV outbreaks in central China, and further analysed the genetic characteristics of three virulent G-I GAstV isolates from commercial goose farms and goose hatchery, indicating the diverse transmission of the virus and providing a basis for developing effective preventive measures and control strategies.


Subject(s)
Astroviridae Infections , Avastrovirus , Gout , Poultry Diseases , Animals , Astroviridae Infections/epidemiology , Astroviridae Infections/veterinary , Avastrovirus/genetics , China/epidemiology , Geese , Genomics , Gout/veterinary , Phylogeny , Poultry Diseases/epidemiology
4.
Antibiotics (Basel) ; 10(10)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34680737

ABSTRACT

Salmonella continues to be a major food and public health burden worldwide that can threaten human health via eating contaminated meats, particularly those originating from chicken. In this study, the antimicrobial resistance profiles, epidemiological characteristics of resistance genes, and pulsed field gel electrophoresis (PFGE-XbaI) typing of 120 non-Pullorum/Gallinarum Salmonella isolates recovered from chicken embryos in Henan province were determined. The antimicrobial resistant phenotypes and evaluation of the extended-spectrum beta-lactamases (ESBLs) producing strains of Salmonella were investigated by the Kirby-Bauer test and the double-disk synergy test. Additionally, 37 antimicrobial resistance genes encoding resistance to five different categories, including aminoglycosides, cephalosporins, sulphonamides, tetracyclines, and ß-lactams, were examined by conventional PCR. However, genotyping analysis was conducted by macro-restriction using enzyme XbaI followed by the separation of the restricted DNA fragments by PFGE. The results of this study showed that the studied Salmonella strains were highly resistant to ampicillin (66.67%) and sulfisoxazole (66.67%), while they were all susceptible to meropenem, imipenem, colistin, and chloramphenicol. Additionally, 67.5% (81/120) of the studied strains were multidrug resistant, and 21.67% (26/120) were phenotypically confirmed as ESBLs positive. The statistical analysis showed that resistance depends on the serovars, and ESBLs positive strains showed more multi-resistance than ESBLs negative strains (p < 0.05). The genotypic antimicrobial resistance showed the detection of 14 among the 37 tested genes, and the concordance between genotypic and phenotypic antimicrobial resistance ranged from 0% to 100% depending on the serovars. However, the PFGE-XbaI typing results showed that the examined Salmonella strains were divided into 22 individual subtypes and were grouped in nine clusters, with similarity values ranging from 64.7% to 100%. From this study, we can conclude that the antimicrobial resistance of Salmonella serovars isolated from chicken embryos in Henan province was alarming, with rigorous multidrug resistance, which requires the urgent mitigation of the use of antimicrobial drugs in chicken hatcheries. Additionally, our results showed evidence of the presence of different PFGE patterns among the studied Salmonella serovars, suggesting the presence of different sources of contamination.

5.
Article in English | MEDLINE | ID: mdl-33042870

ABSTRACT

The emergence of antimicrobial-resistant (AR) Salmonella has a major concern worldwide. This study was designed to determine the AR profiles and serovars distribution of Salmonella enterica isolated from different breeds of breeder chickens in the province of Henan, China. For this, 2,139 dead embryo samples were collected from 28 breeder chicken hatcheries, representing two domestic and four foreign breeds. The samples were subjected to the isolation and identification of Salmonella by PCR. The confirmed strains were serotyped according to the Kauffmann-White scheme and their AR profiles against 20 antimicrobial agents were determined by Kirby-Bauer (K-B) disc diffusion method. The results of this study showed the prevalence of Salmonella in 504 strains (23.56%) with a high abundance in southern regions of Yellow River (28.66%, n = 495, N = 1,727) compared to the northern regions (2.18%, n = 9, N = 412) (p < 0.0001). The domestic breeds were more contaminated than imported breeds (p < 0.0001). However, the contamination rate of samples recovered from M-hatcheries was the highest (p < 0.0001). Serotyping method identified 12 serovars, with the dominance of S. Pullorum (75.79%), followed by S. Enteritidis (7.14%). The AR assay showed high resistant to ciprofloxacin (77.00%), sulfisoxazole (73.00%), and ampicillin (55.60%), as well as 98.81% (n = 498) of the isolated strains, were resistant to at least one antimicrobial and 69.64% (n = 351) were resistant to three or more antimicrobials. Among them, one strain of S. Thompson was resistant to 15 antimicrobial agents belonging to eight different classes. In conclusion, Salmonella strains isolated in this study were multidrug-resistant (MDR), presenting a serious problem for human and animal health. Therefore, it is necessary to monitor, control, and rationalize the use of antimicrobials agents in chicken farms in order to limit the increasing resistance against the recent antimicrobial agents.


Subject(s)
Anti-Infective Agents , Salmonella Infections, Animal , Salmonella , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Chickens/microbiology , China/epidemiology , Drug Resistance, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/drug effects , Humans , Microbial Sensitivity Tests , Salmonella/drug effects , Salmonella/genetics , Salmonella Infections, Animal/epidemiology
7.
Article in English | MEDLINE | ID: mdl-32714906

ABSTRACT

Salmonella enterica serovar 4,[5],12:i:-, so-called Typhimurium monophasic variant, has become one of the most frequently isolated serovars both in humans and in animals all over the world. The increasing prevalence of mcr-1-carrying Salmonella poses significant global health concerns. However, the potential role of Salmonella 4,[5],12:i:- in mcr-1 gene migration through the food chain to the human remains obscure. Here, we investigated 337 Salmonella isolates from apparently healthy finishing pigs, which is rarely studied, obtained from pig farms and slaughterhouses in China. The mcr-1 gene was found in four colistin-resistant S. enterica 4,[5],12:i:- isolates. Notably, all four isolates belonged to sequence type 34 (ST34) with multidrug resistance phenotype. Further genomic sequencing and antimicrobial resistance characterization confirmed that mcr was responsible for the colistin resistance, and the conjugation assay demonstrated that three of four isolates carried mcr-1 in IncHI2 plasmid. Importantly, mcr-1 and class-1 integron were found to co-localize in two strains with IncHI2 plasmid. By collecting all the mcr-1-carrying Typhimurium and monophasic variant strains across the food chain (farm animals, animal-origin food, and humans), our phylogenomic analysis of available 66 genomes, including four strains in this study, demonstrated an independent phylogenetic cluster of all eight Chinese swine-originated isolates and one human isolate. Together, this study provides direct evidence for clonal and pork-borne transmission of mcr-1 by Salmonella 4,[5],12:i:- ST34 in China and highlighted a domestication pathway by acquisition of additional antimicrobial resistance determinants in Chinese ST34 isolates.

8.
Front Microbiol ; 10: 1513, 2019.
Article in English | MEDLINE | ID: mdl-31333618

ABSTRACT

With the increase in commercial pig farming, there is a simultaneous increase in the use of antibiotics for prophylaxis as well as therapeutics in China. In this study, we evaluated the prevalence and resistance diversity of salmonellae isolated from feces of asymptomatic, live and slaughtered pigs. We analyzed 1,732 pig fecal samples collected over 8 months, at Henan province of China. The salmonellae were isolated and identified by PCR. They were serotyped using commercial antisera and assayed for the MIC of 16 antibiotics by broth microdilution method. The average prevalence of Salmonella was 19.4% (95% CI: 17.6-21.4). Large farms (herd size ≥1,000) were found to have a higher prevalence as compared to the small- and medium-scale farms (p < 0.0001). The prevalence of salmonellae in samples collected from the farms [11.77% (95% CI: 10.1-13.6)] and from the slaughterhouse [45.23% (95% CI: 40.3-50.30)] was statistically different (p < 0.0001). Uncommon serovars of Salmonella such as Agama and common serovars such as Derby and Typhimurium were isolated. High resistance (>80%) was recorded toward ciprofloxacin (100%), tetracycline (99.4%), doxycycline (97%), sulfamethoxazole (85.8%), ampicillin (81.6%), and amoxicillin (80.4%). Multidrug resistance (MDR) to four, five, and seven classes of antibiotics was recorded to be approximately 25% in the most prevalent serovar like Derby. We conclude that the presence of alarmingly high resistance, toward the critical antibiotics such as fluoroquinolones and beta-lactams, in large swine farms in China, should draw public attention. These results highlight the need for continued antibiotic stewardship programs for judicious use of critical antibiotics in animal health as well as for producing safe pork.

SELECTION OF CITATIONS
SEARCH DETAIL
...