Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 917: 170421, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38286291

ABSTRACT

Leachate comprising organic contaminants such as dichloromethane is frequently discharged into groundwater at contaminated sites and unlined landfills. Soil-bentonite backfills in vertical cutoff walls are extensively employed to contain the flow of contaminated groundwater, thereby safeguarding the downstream groundwater environmental quality and ecosystem. This study presented a comprehensive evaluation of effects of dichloromethane-impacted groundwater on hydraulic conductivity and microscopic characteristics of soil-bentonite backfills amended with polymer namely polyanionic cellulose and microscale zero-valent iron. The results showed the amended backfills exhibited lower hydraulic conductivity than the unamended backfill regardless of the permeant type, i.e., tap water and dichloromethane solution. Scanning electron microscopy coupled with energy-dispersive spectrometry analyses demonstrated that polyanionic cellulose hydrogel could effectively coat sand, bentonite, and microscale zero-valent iron particles, providing protection of bentonite particles against attacks imposed by the dichloromethane and multivalent iron ions, and diminish aggregation of microscale zero-valent iron particles in the amended backfills. X-ray diffraction results indicated there was no intercalation of polyanionic cellulose and microscale zero-valent iron into the montmorillonite platelets of bentonite particles. Based on the Fourier Transform Infrared Spectroscopy Spectra analysis, a new functional group (-CH2) was identified on the polyanionic cellulose amended bentonite particles. The results demonstrated that amendment with polyanionic cellulose and microscale zero-valent iron is a promising approach to improve the performance of soil-bentonite backfills in containing flow of dichloromethane-impacted groundwater.

2.
Polymers (Basel) ; 15(14)2023 Jul 16.
Article in English | MEDLINE | ID: mdl-37514449

ABSTRACT

The workability, hydraulic conductivity, and mechanical properties are essential to contaminant containment performance of cementitious backfills in vertical cutoff walls at contaminated sites. This study aims to investigate the engineering properties of a novel vertical cutoff wall backfill composed of reactive magnesia (MgO)-activated ground granulated blast furnace slag (GGBS), sodium-activated calcium bentonite amended with polyacrylamide cellulose (PAC), and clean sand (referred to as MSBS-PAC). Backfills composed of MgO-activated GGBS, sodium-activated calcium bentonite, and clean sand (referred to as MSBS) were also tested for comparison purposes. A series of tests were conducted which included slump test, flexible-wall hydraulic conductivity test, and unconfined compression test. The pore size distributions of two types of backfills were investigated via the nuclear magnetic resonance (NMR) technique. The results showed the moisture content corresponding to the target slump height was higher for MSBS-PAC backfill than that for MSBS backfill. The MSBS-PAC backfill possessed lower pH, dry density, and higher void ratio at different standard curing times as compared to MSBS backfill. The unconfined compressive strength and strain at failure of the MSBS-PAC backfill were noticeable lower than those of the MSBS backfill. In contrast, the hydraulic conductivity of MSBS-PAC backfill was approximately one order of magnitude lower than that of the MSBS backfill, which was less than 10-9 m/s after 28-day and 90-day curing. Lower hydraulic conductivity of MSBS-PAC backfill was attributed to the improvement of pore structure and pore fluid environment by PAC amendment.

SELECTION OF CITATIONS
SEARCH DETAIL
...