Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Huan Jing Ke Xue ; 44(9): 5025-5035, 2023 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-37699820

ABSTRACT

The nutrient release characteristics of four types of composts, pure municipal sewage sludge compost, corn straw biochar (CSB) improved compost, effective microorganism agent (EM) improved compost, and CSB+EM improved compost, in coastal wetland soil were examined through a soil incubation experiment. The effects of different composts on the spectral characteristics of soil dissolved organic matter (DOM) and microbial community were also investigated. The results demonstrated that the compost additions could significantly reduce soil pH, while increasing soil electrical conductivity and contents of plant available nutrients (e.g., dissolved organic carbon, NH4+-N, NO3--N, available phosphorus, and available potassium). By comparing the nutrient release potential among the improved composts, the CSB+EM-improved compost (CSB+EM-C) evidently had the highest nutrient release potential. Furthermore, the DOM in CSB+EM-C amended soil exhibited a higher humification degree than that of the other composts. The high-throughput sequencing results indicated that the compost additions increased the relative abundances of dominant bacteria at the phylum level, such as the Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. CSB+EM-C exhibited a greater potential to improve the relative abundance of these dominant bacteria phyla than other improved composts. Overall, among all the improvement approaches, the combined use of CSB and EM agent was the optimal composting strategy owing to its highest potentials of nutrient supply and soil quality improvement. The present findings can provide a solid scientific theoretical basis for establishing an effective technology strategy involving the combination of municipal sewage sludge utilization and degraded coastal wetland soil remediation.


Subject(s)
Composting , Sewage , Dissolved Organic Matter , Nutrients , Soil
2.
Huan Jing Ke Xue ; 43(10): 4658-4668, 2022 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-36224151

ABSTRACT

How to control non-point source pollution caused by leaching of soil nitrate and phosphate from agricultural land is currently an extremely important global environmental problem facing human society. Biochar, a carbon-rich material produced from various organic feedstocks using thermochemical technologies, has attracted much attention because of its great potential in soil improvement. Many studies have been carried out to investigate the effects of biochar application on the retention, utilization, and use efficiency of soil nutrients. Unfortunately, the results from individual experimental studies regarding the effects of biochar on soil nitrate leaching and phosphate retention differed greatly. Consequently, the underlying mechanisms related to reduction in nitrate and phosphate leaching/retention by biochar application, as well as the appropriate preparation conditions (or biochar type), remain unclear. In this study, the effects of biochar application on soil nitrate leaching and phosphate retention were systematically examined using the method of Meta-analysis (MA); based on these results, the inhibition mechanisms for nitrate leaching and enhancement mechanisms for phosphate retention were also explored. In total, 149 paired datasets from 41 articles and 180 paired datasets from 36 articles were collected for nitrate and phosphate, respectively. The MA results demonstrated that, regardless biochar and soil properties, biochar application could significantly reduce soil nitrate leaching by 37.1% and increase soil phosphate retention by 20.8%. Furthermore, the C/N ratio of biochar, heating treatment temperature, and biochar application amount indicated a significant effect on the response of soil nitrate leaching to biochar application. The specific surface area of biochar, heating treatment temperature, and soil organic carbon content had a significant effect on the response of soil phosphate retention to biochar application. Based on the results from MA, the potential mechanisms of soil nitrite leaching reduction and phosphate retention enhancement were further explored from different perspectives. Lastly, the biochars prepared from straw or wood materials and pyrolyzed at a medium temperature (400-600℃) or high temperature (>600℃) were recommended for reducing soil nitrate leaching and improving soil phosphate retention, respectively. In sum, the results presented in this study can provide a scientifically theoretical basis for the practical application of biochar in the control of soil non-point source pollution of nitrate and phosphate.


Subject(s)
Nitrates , Soil , Carbon , Charcoal/chemistry , Humans , Nitrates/analysis , Nitrites/analysis , Phosphates/analysis , Soil/chemistry
3.
Huan Jing Ke Xue ; 34(8): 3327-33, 2013 Aug.
Article in Chinese | MEDLINE | ID: mdl-24191586

ABSTRACT

Biochar is a fine-grained and porous material, which is produced by pyrolyzing biomass under anaerobic or oxygen-limiting condition. Due to the aromatic structure, it is resistant to the biotic and abiotic degradation which makes biochar production a promising carbon sequestration technology, and it has attracted widespread attention. Factors including biochar production, biochar stability in soil and the response of plant growth and soil organic carbon to the biochar addition can influence the carbon sequestration potential of biochar. Through exploring the mechanisms of biochar carbon sequestration, the influence of these factors was studied. Furthermore, the research progress of carbon sequestration potential and its economic viability were examined. Finally, aiming at the knowledge gaps in the influencing factors as well as the relationship between these factors, some further research needs were proposed for better application of biochar in China.


Subject(s)
Carbon Sequestration , Charcoal/chemistry , Soil/chemistry , China
4.
Huan Jing Ke Xue ; 34(6): 2486-92, 2013 Jun.
Article in Chinese | MEDLINE | ID: mdl-23947074

ABSTRACT

The production of biochar by pyrolysis and its application to soil can sequester the CO2 which was absorbed by plants from atmosphere into soil, in addition it can also bring multiple benefits for agriculture production. On the basis of the available potential survey of the biomass residues from agriculture and forestry section, life cycle assessment was employed to quantify the potential of biochar technology in mitigation of greenhouse gases in our country. The results showed: In China, the amount of available biomass resource was 6.04 x 10(8) t every year and its net greenhouse effect potential was 5.32 x 10(8) t CO(2e) (CO(2e): CO2 equivalent), which was equivalent to 0.88 t CO(2e) for every ton biomass. The greatest of contributor to the total potential was plant carbon sequestration in soil as the form of biochar which accounts for 73.94%, followed by production of renewable energy and its percentage was 23.85%. In summary, production of biochar from agriculture and forestry biomass residues had a significant potential for our country to struggle with the pressure of greenhouse gas emission.


Subject(s)
Air Pollutants/isolation & purification , Air Pollution/prevention & control , Carbon Dioxide/isolation & purification , Charcoal/chemistry , Greenhouse Effect , Adsorption , Air Pollutants/analysis , Carbon Dioxide/analysis , Charcoal/chemical synthesis , China , Crops, Agricultural/chemistry , Plant Stems/chemistry , Refuse Disposal
SELECTION OF CITATIONS
SEARCH DETAIL
...