Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
Opt Express ; 32(11): 19779-19791, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859104

ABSTRACT

Derived from infrared pyroelectric detection, typical terahertz (THz) pyroelectric detectors have low sensitivity at low-frequency THz bands. Based on the high-efficiency absorption of the metamaterial perfect absorber (MPA), a novel split ring hole metamaterial-enhanced pyroelectric detector is proposed to achieve efficient multi-narrowband THz detection. Using high frequency simulation software (HFSS), the dimensional parameters including ring radius, ring width, connection beam width, array period, and thickness, are optimized to enhance efficient multi-narrowband absorption. The as-optimized metamaterial-enhanced detectors are fabricated via micro-nano manufacturing technology. The voltage responsiveness and noise equivalent power of the metamaterial-enhanced detector are tested by THz focused optical path and compared with those of the typical pyroelectric detector and the simulated MPA absorptivity. The results indicate that the metamaterial-enhanced detector has a multi-narrowband detection capability at 0.245 THz, 0.295 THz, and 0.38 THz, which is close to the simulated MPA absorptivity. Compared to the typical pyroelectric detector, the split ring hole metamaterial-enhanced detector can simultaneously achieve thermal absorption, thermal conduction, and pyroelectricity in the same MPA structure, providing faster response speed above 100 Hz chopper frequency and two times higher detection sensitivity at multi-narrowband THz frequencies. This research can be used for THz sensing, absorption filtering, biological macromolecule detection, and other applications.

2.
Biosens Bioelectron ; 258: 116291, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38735080

ABSTRACT

Depression is one of the most common mental disorders and is mainly characterized by low mood or lack of interest and pleasure. It can be accompanied by varying degrees of cognitive and behavioral changes and may lead to suicide risk in severe cases. Due to the subjectivity of diagnostic methods and the complexity of patients' conditions, the diagnosis of major depressive disorder (MDD) has always been a difficult problem in psychiatry. With the discovery of more diagnostic biomarkers associated with MDD in recent years, especially emerging non-coding RNAs (ncRNAs), it is possible to quantify the condition of patients with mental illness based on biomarker levels. Point-of-care biosensors have emerged due to their advantages of convenient sampling, rapid detection, miniaturization, and portability. After summarizing the pathogenesis of MDD, representative biomarkers, including proteins, hormones, and RNAs, are discussed. Furthermore, we analyzed recent advances in biosensors for detecting various types of biomarkers of MDD, highlighting representative electrochemical sensors. Future trends in terms of new biomarkers, new sample processing methods, and new detection modalities are expected to provide a complete reference for psychiatrists and biomedical engineers.


Subject(s)
Biomarkers , Biosensing Techniques , Depressive Disorder, Major , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Humans , Biomarkers/analysis , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/genetics , Point-of-Care Systems , Electrochemical Techniques/methods
3.
Nanotechnology ; 35(34)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38579690

ABSTRACT

This study utilized ion implantation to modify the material properties of silicon carbide (SiC) to mitigate subsurface damage during SiC machining. The paper analyzed the mechanism of hydrogen ion implantation on the machining performance of SiC at the atomic scale. A molecular dynamics model of nanoscale cutting of an ion-implanted SiC workpiece using a non-rigid regular tetrakaidecahedral diamond abrasive grain was established. The study investigated the effects of ion implantation on crystal structure phase transformation, dislocation nucleation, and defect structure evolution. Results showed ion implantation modification decreased the extension depth of amorphous structures in the subsurface layer, thereby enhancing the surface and subsurface integrity of the SiC workpiece. Additionally, dislocation extension length and volume within the lattice structure were lower in the ion-implanted workpiece compared to non-implanted ones. Phase transformation, compressive pressure, and cutting stress of the lattice in the shear region per unit volume were lower in the ion-implanted workpiece than the non-implanted one. Taking the diamond abrasive grain as the research subject, the mechanism of grain wear under ion implantation was explored. Grain expansion, compression, and atomic volumetric strain wear rate were higher in the non-implanted workpiece versus implanted ones. Under shear extrusion of the SiC workpiece, dangling bonds of atoms in the diamond grain were unstable, resulting in graphitization of the diamond structure at elevated temperatures. This study established a solid theoretical and practical foundation for realizing non-destructive machining at the atomic scale, encompassing both theoretical principles and practical applications.

4.
Biosens Bioelectron ; 255: 116090, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38569250

ABSTRACT

Cardiovascular diseases (CVDs), especially chronic heart failure, threaten many patients' lives worldwide. Because of its slow course and complex causes, its clinical screening, diagnosis, and prognosis are essential challenges. Clinical biomarkers and biosensor technologies can rapidly screen and diagnose. Multiple types of biomarkers are employed for screening purposes, precise diagnosis, and treatment follow-up. This article provides an up-to-date overview of the biomarkers associated with the six main heart failure etiology pathways. Plasma natriuretic peptides (BNP and NT-proBNP) and cardiac troponins (cTnT, cTnl) are still analyzed as gold-standard markers for heart failure. Other complementary biomarkers include growth differentiation factor 15 (GDF-15), circulating Galactose Lectin 3 (Gal-3), soluble interleukin (sST2), C-reactive protein (CRP), and tumor necrosis factor-alpha (TNF-α). For these biomarkers, the electrochemical biosensors have exhibited sufficient sensitivity, detection limit, and specificity. This review systematically summarizes the latest molecular biomarkers and sensors for heart failure, which will provide comprehensive and cutting-edge authoritative scientific information for biomedical and electronic-sensing researchers in the field of heart failure, as well as patients. In addition, our proposed future outlook may provide new research ideas for researchers.


Subject(s)
Biosensing Techniques , Heart Failure , Humans , Biomarkers , Prognosis , Natriuretic Peptide, Brain , Heart Failure/diagnosis , C-Reactive Protein/metabolism , Peptide Fragments
5.
Microsyst Nanoeng ; 10: 24, 2024.
Article in English | MEDLINE | ID: mdl-38344149

ABSTRACT

Stress tolerance plays a vital role in ensuring the effectiveness of piezoresistive sensing films used in flexible pressure sensors. However, existing methods for enhancing stress tolerance employ dome-shaped, wrinkle-shaped, and pyramidal-shaped microstructures in intricate molding and demolding processes, which introduce significant fabrication challenges and limit the sensing performance. To address these shortcomings, this paper presents periodic microslits in a sensing film made of multiwalled carbon nanotubes and polydimethylsiloxane to realize ultrahigh stress tolerance with a theoretical maximum of 2.477 MPa and a sensitivity of 18.092 kPa-1. The periodic microslits permit extensive deformation under high pressure (e.g., 400 kPa) to widen the detection range. Moreover, the periodic microslits also enhance the sensitivity based on simultaneously exhibiting multiple synapses within the sensing interface and between the periodic sensing cells. The proposed solution is verified by experiments using sensors based on the microslit strategy for wind direction detection, robot movement sensing, and human health monitoring. In these experiments, vehicle load detection is achieved for ultrahigh pressure sensing under an ultrahigh pressure of over 400 kPa and a ratio of the contact area to the total area of 32.74%. The results indicate that the proposed microslit strategy can achieve ultrahigh stress tolerance while simplifying the fabrication complexity of preparing microstructure sensing films.

6.
Nano Lett ; 24(6): 2003-2010, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38306120

ABSTRACT

Heat-assisted magnetic anisotropy engineering has been successfully used in selective magnetic writing and microwave amplification due to a large interfacial thermal resistance between the MgO barrier and the adjacent ferromagnetic layers. However, in spin-orbit torque devices, the writing current does not flow through the tunnel barrier, resulting in a negligible heating effect due to efficient heat dissipation. Here, we report a dramatically reduced switching current density of ∼2.59 MA/cm2 in flexible spin-orbit torque heterostructures, indicating a 98% decrease in writing energy consumption compared with that on a silicon substrate. The reduced driving current density is enabled by the dramatically decreased magnetic anisotropy due to Joule dissipation and the lower thermal conductivity of the flexible substrate. The large magnetic anisotropy could be fully recovered after the impulse, indicating retained high stability. These results pave the way for flexible spintronics with the otherwise incompatible advantages of low power consumption and high stability.

7.
Colloids Surf B Biointerfaces ; 234: 113742, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38271855

ABSTRACT

Because of the excellent performance in photochemistry, WO3 is increasingly applied in the field of biology and medicine. However, little is known about the mechanism of WO3 cytotoxicity. In this work, WO3 nanosheets with oxygen vacancy are synthesized by solvothermal method, then characterized and added to culture medium of human umbilical vein endothelial cells (HUVECs) with different concentrations. We characterized and analyzed the morphology of nano-WO3 by transmission electron microscopy and calculated the specific data of oxygen vacancy by XPS. It is the first time the effect of WO3-x on cells that WO3-x can cause oxidative stress in HUVEC cells, resulting in DNA damage and thus promoting apoptosis. Transcriptome sequencing is performed on cells treated with low and high concentrations of WO3-x, and a series of key signals affecting cell proliferation and apoptosis are detected in differentially expressed genes, which indicates the research direction of nanotoxicity. The expression levels of key genes are also verified by quantitative PCR after cell treatment with different concentrations of WO3-x. This work fills the gap between the biocompatibility of nano WO3-x materials and molecular cytology and paves the way for investigating the mechanism and risks of oxygen vacancy in cancer therapy.


Subject(s)
Oxides , Oxygen , Humans , Human Umbilical Vein Endothelial Cells , Oxides/chemistry , Tungsten/toxicity , Tungsten/chemistry
8.
Nanomaterials (Basel) ; 14(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276739

ABSTRACT

An intensity-demodulated fiber-optic magnetometer is proposed and experimentally investigated, which is fabricated via fusion splicing a segment of photonic crystal fiber (PCF) between single-mode fibers (SMFs), with the cladding air holes of PCF filled with magnetic fluid. Using the magneto-optical properties of the magnetic fluid, the transmission spectrum is changed with an external magnetic field. Based on the intensity variations in the transmission spectrum, the magnetic field is detected, and a sensitivity of 0.238 dB/mT is obtained at 1550.03 nm with the length of PCF 5.5 cm. By converting light signals into electrical signals, a sensitivity of 0.003 V/mT is achieved. The fiber-optic magnetometer possesses the advantages of simple fabrication, compact/robust structure, and low cost.

9.
Anal Chem ; 96(2): 839-846, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38174654

ABSTRACT

Biofouling deteriorates the performance of sensors operated in biofluids. Protein adsorption is believed to be the first step of biofouling, which also reduces biocompatibility by further inducing cell adhesion, platelet activation, and even inflammation. Current studies of antifouling coatings are focused on polymers and hydrogels, which have succeeded in remaining resistant to protein adsorption, but their application on sensor electrodes is limited due to low conductivity and biocompatibility. Here, we report a spontaneous antibiofouling strategy for sensor electrodes by controlling oxygen vacancies in WO3 nanosheets. Irreversible adsorption of proteins was reduced by 76% in unprocessed human plasma when electrodes were coated with WO3 rich in surface oxygen vacancy. These electrodes maintained 91% of the initial current density after 1 month of incubation in human plasma.


Subject(s)
Biofouling , Polymers , Humans , Proteins , Plasma , Biofouling/prevention & control , Hypoxia , Oxygen , Surface Properties
10.
Small ; 20(12): e2306318, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37948443

ABSTRACT

The development of excellently stretchable, highly mobile, and sustainable power supplies is of great importance for self-power wearable electronics. Transpiration-driven hydrovoltaic power generator (HPG) has been demonstrated to be a promising energy harvesting strategy with the advantages of negative heat and zero-carbon emissions. Herein, this work demonstrates a fiber-based stretchable HPG with the advantages of high output, portability, knittability, and sustainable power generation. Based on the functionalized micro-nano water diffusion channels constructed by the discarded mask straps (MSs) and oxidation-treated carbon nanomaterials, the applied water can continuously produce electricity during the spontaneous flow and diffusion. Experimentally, when a tiny 0.1 mL of water encounters one end of the proposed HPG, the centimeter-length device can yield a peak voltage of 0.43 V, peak current of 29.5 µA, and energy density of 5.833 mW h cm-3. By efficiently integrating multiple power generation units, sufficient output power can be provided to drive commercial electronic devices even in the stretched state. Furthermore, due to the reversibility of the electrical output during dynamic stretching-releasing, it can passively convert physiological activities and motion behaviors into quantifiable and processable current signals, opening up HPG's application in the field of self-powered wearable sensing.

11.
Adv Sci (Weinh) ; 11(10): e2307746, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38145346

ABSTRACT

Electrical stimulation (ES) is proposed as a therapeutic solution for managing chronic wounds. However, its widespread clinical adoption is limited by the requirement of additional extracorporeal devices to power ES-based wound dressings. In this study, a novel sandwich-structured photovoltaic microcurrent hydrogel dressing (PMH dressing) is designed for treating diabetic wounds. This innovative dressing comprises flexible organic photovoltaic (OPV) cells, a flexible micro-electro-mechanical systems (MEMS) electrode, and a multifunctional hydrogel serving as an electrode-tissue interface. The PMH dressing is engineered to administer ES, mimicking the physiological injury current occurring naturally in wounds when exposed to light; thus, facilitating wound healing. In vitro experiments are performed to validate the PMH dressing's exceptional biocompatibility and robust antibacterial properties. In vivo experiments and proteomic analysis reveal that the proposed PMH dressing significantly accelerates the healing of infected diabetic wounds by enhancing extracellular matrix regeneration, eliminating bacteria, regulating inflammatory responses, and modulating vascular functions. Therefore, the PMH dressing is a potent, versatile, and effective solution for diabetic wound care, paving the way for advancements in wireless ES wound dressings.


Subject(s)
Diabetes Mellitus , Hydrogels , Humans , Biomimetics , Proteomics , Wound Healing , Bandages
12.
Micromachines (Basel) ; 14(12)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38138309

ABSTRACT

In this work, a novel fiber-optic sensor for 2D magnetic sensing is explored based on nanostructured magnetic fluid. The fiber-optic sensor comprises a ring-shaped fiber structure that is coated with magnetic fluid. The unique magneto-optical characteristic of the nanostructured magnetic fluid enables the fiber-optic structure to detect magnetic fields. By utilizing the 3D Monte Carlo method, the magneto-optical characteristic induced by the nanostructure changes in the magnetic fluid was analyzed. The sensor can realize 2D vector magnetic sensing by intensity demodulation and achieves a sensitivity of 2.402 dB/mT. The proposed fiber optic sensor helps in developing a high-sensitivity 2D vector magnetic field sensor, which has potential applications in the fields of navigation, electrical power systems, and biological detection.

13.
Nanomaterials (Basel) ; 13(24)2023 Dec 17.
Article in English | MEDLINE | ID: mdl-38133055

ABSTRACT

The flexible electronics have application prospects in many fields, including as wearable devices and in structural detection. Spintronics possess the merits of a fast response and high integration density, opening up possibilities for various applications. However, the integration of miniaturization on flexible substrates is impeded inevitably due to the high Joule heat from high current density (1012 A/m2). In this study, a prototype flexible spintronic with device antiferromagnetic/ferromagnetic heterojunctions is proposed. The interlayer coupling strength can be obviously altered by sunlight soaking via direct photo-induced electron doping. With the assistance of a small magnetic field (±125 Oe), the almost 180° flip of magnetization is realized. Furthermore, the magnetoresistance changes (15~29%) of flexible spintronics on fingers receiving light illumination are achieved successfully, exhibiting the wearable application potential. Our findings develop flexible spintronic sensors, expanding the vision for the novel generation of photovoltaic/spintronic devices.

14.
Microsyst Nanoeng ; 9: 156, 2023.
Article in English | MEDLINE | ID: mdl-38125202

ABSTRACT

Pressure sensors play a vital role in aerospace, automotive, medical, and consumer electronics. Although microelectromechanical system (MEMS)-based pressure sensors have been widely used for decades, new trends in pressure sensors, including higher sensitivity, higher accuracy, better multifunctionality, smaller chip size, and smaller package size, have recently emerged. The demand for performance upgradation has led to breakthroughs in sensor materials, design, fabrication, and packaging methods, which have emerged frequently in recent decades. This paper reviews common new trends in MEMS pressure sensors, including minute differential pressure sensors (MDPSs), resonant pressure sensors (RPSs), integrated pressure sensors, miniaturized pressure chips, and leadless pressure sensors. To realize an extremely sensitive MDPS with broad application potential, including in medical ventilators and fire residual pressure monitors, the "beam-membrane-island" sensor design exhibits the best performance of 66 µV/V/kPa with a natural frequency of 11.3 kHz. In high-accuracy applications, silicon and quartz RPS are analyzed, and both materials show ±0.01%FS accuracy with respect to varying temperature coefficient of frequency (TCF) control methods. To improve MEMS sensor integration, different integrated "pressure + x" sensor designs and fabrication methods are compared. In this realm, the intercoupling effect still requires further investigation. Typical fabrication methods for microsized pressure sensor chips are also reviewed. To date, the chip thickness size can be controlled to be <0.1 mm, which is advantageous for implant sensors. Furthermore, a leadless pressure sensor was analyzed, offering an extremely small package size and harsh environmental compatibility. This review is structured as follows. The background of pressure sensors is first presented. Then, an in-depth introduction to MEMS pressure sensors based on different application scenarios is provided. Additionally, their respective characteristics and significant advancements are analyzed and summarized. Finally, development trends of MEMS pressure sensors in different fields are analyzed.

15.
Micromachines (Basel) ; 14(11)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-38004842

ABSTRACT

The miniaturization of quantum sensors is a popular trend for the development of quantum technology. One of the key components of these sensors is a coil which is used for spin modulation and manipulation. The bi-planar coils have the advantage of producing three-dimensional magnetic fields with only two planes of current confinement, whereas the traditional Helmholtz coils require three-dimensional current distribution. Thus, the bi-planar coils are compatible with the current micro-fabrication process and are quite suitable for the compact design of the chip-scale atomic devices that require stable or modulated magnetic fields. This paper presents a design of a miniature bi-planar coil. Both the magnetic fields produced by the coils and their inhomogeneities were designed theoretically. The magnetic field gradient is a crucial parameter for the coils, especially for generating magnetic fields in very small areas. We used a NMR (Nuclear Magnetic Resonance) method based on the relaxation of 131Xe nuclear spins to measure the magnetic field gradient in situ. This is the first time that the field inhomogeneities of the field of such small bi-planar coils have been measured. Our results indicate that the designed gradient caused error is 0.08 for the By and the Bx coils, and the measured gradient caused error using the nuclear spin relaxation method is 0.09±0.02, suggesting that our method is suitable for measuring gradients. Due to the poor sensitivity of our magnetometer under a large Bz bias field, we could not measure the Bz magnetic field gradient. Our method also helps to improve the gradients of the miniature bi-planar coil design, which is critical for chip-scale atomic devices.

16.
Microsyst Nanoeng ; 9: 141, 2023.
Article in English | MEDLINE | ID: mdl-37954038

ABSTRACT

Acute myocardial infarction (AMI) is a life-threatening disease when sudden blockage of coronary artery occurs. As the most specific biomarker, cardiac troponin I (cTnI) is usually checked separately to diagnose or eliminate AMI, and achieving the accurate detection of cTnI is of great significance to patients' life and health. Compared with other methods, fluorescent detection has the advantages of simple operation, high sensitivity and wide applicability. However, due to the strong fluorescence interference of biological molecules in body fluids, it is often difficult to obtain high sensitivity. In order to solve this problem, in this study, surface acoustic wave separation is designed to purify the target to achieve more sensitive detection performance of fluorescent detection. Specifically, the interference of background noise is almost completely removed on a microfluidic chip by isolating microbeads through acoustic radiation force, on which the biomarkers are captured by the immobilized detection probe. And then, the concentration of cTnI in human serum is detected by the fluorescence intensity change of the isolated functionalized beads. By this way, the detection limit of our biosensor calculated by 3σ/K method is 44 pg/mL and 0.34 ng/mL in PBS buffer and human serum respectively. Finally, the reliability of this method has been validated by comparison with clinical tests from the nephelometric analyzer in hospital.

17.
Adv Mater ; : e2306350, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37987498

ABSTRACT

Hydrogels have emerged as powerful building blocks to develop various soft bioelectronics because of their tissue-like mechanical properties, superior bio-compatibility, the ability to conduct both electrons and ions, and multiple stimuli-responsiveness. However, hydrogels are vulnerable to mechanical damage, which limits their usage in developing durable hydrogel-based bioelectronics. Self-healing hydrogels aim to endow bioelectronics with the property of repairing specific functions after mechanical failure, thus improving their durability, reliability, and longevity. This review discusses recent advances in self-healing hydrogels, from the self-healing mechanisms, material chemistry, and strategies for multiple properties improvement of hydrogel materials, to the design, fabrication, and applications of various hydrogel-based bioelectronics, including wearable physical and biochemical sensors, supercapacitors, flexible display devices, triboelectric nanogenerators (TENGs), implantable bioelectronics, etc. Furthermore, the persisting challenges hampering the development of self-healing hydrogel bioelectronics and their prospects are proposed. This review is expected to expedite the research and applications of self-healing hydrogels for various self-healing bioelectronics.

18.
Microsyst Nanoeng ; 9: 133, 2023.
Article in English | MEDLINE | ID: mdl-37886351

ABSTRACT

With the growing demand for thermal management of electronic devices, cooling of high-precision instruments, and biological cryopreservation, heat flux measurement of complex surfaces and at ultralow temperatures has become highly imperative. However, current heat flux sensors (HFSs) are commonly used in high-temperature scenarios and have problems when applied in low-temperature conditions, such as low sensitivity and embrittlement. In this study, we developed a flexible and highly sensitive HFS that can operate at ultralow to high temperatures, ranging from -196 °C to 273 °C. The sensitivities of HFSs with thicknesses of 0.2 mm and 0.3 mm, which are efficiently manufactured by the screen-printing method, reach 11.21 µV/(W/m2) and 13.43 µV/(W/m2), respectively. The experimental results show that there is a less than 3% resistance change from bending to stretching. Additionally, the HFS can measure heat flux in both exothermic and absorptive cases and can measure heat flux up to 25 kW/m2. Additionally, we demonstrate the application of the HFS to the measurement of minuscule heat flux, such as heat dissipation of human skin and cold water. This technology is expected to be used in heat flux measurements at ultralow temperatures or on complex surfaces, which has great importance in the superconductor and cryobiology field.

19.
Micromachines (Basel) ; 14(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37893290

ABSTRACT

Graphene, as a novel thermoelectric (TE) material, has received growing attention because of its unique microstructure and excellent thermoelectric properties. In this paper, graphene fibers (GFs) are synthesized by a facile microfluidic spinning technique using a green reducing agent (vitamin C). The GFs have the merits of high electrical conductivity (2448 S/m), high flexibility, and light weight. Further, a flexible temperature sensor based on GF and platinum (Pt) with a sensitivity of 29.9 µV/°C is proposed, and the thermal voltage output of the sensor can reach 3.45 mV at a temperature gradient of 120 °C. The sensor has good scalability in length, and its sensitivity can increase with the number of p-n thermocouples. It has good cyclic stability, repeatability, resistance to bending interference, and stability, showing great promise for applications in real-time detection of human body temperature.

20.
Nanomaterials (Basel) ; 13(17)2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37686990

ABSTRACT

A wireless passive temperature sensor based on a metamaterial structure is proposed that is capable of measuring the temperature of moving parts. The sensor structure consists of an alumina ceramic substrate with a square metal double split-ring resonator fixed centrally on the ceramic substrate. Since the dielectric constant of the alumina ceramic substrate is temperature sensitive, the resonant frequency of the sensor is altered due to changes in temperature. A wireless antenna is used to detect the change in the resonant frequency of the sensor using a wireless antenna, thereby realizing temperature sensing operation of the sensor. The temperature sensitivity of the sensor is determined to be 205.22 kHz/°C with a strong linear response when tested over the temperature range of 25-135 °C, which is evident from the R2 being 0.995. Additionally, the frequency variation in this sensor is insensitive to the angle of rotation and can be used for temperature measurement of rotating parts. The sensor also has a distance warning functionality, which offers additional safety for the user by providing early warning signals when the heating equipment overheats after operating for extended durations.

SELECTION OF CITATIONS
SEARCH DETAIL
...