Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Technol Cancer Res Treat ; 21: 15330338221124696, 2022.
Article in English | MEDLINE | ID: mdl-36128851

ABSTRACT

Osteosarcoma, one of the common malignant tumors in the skeletal system, originates in mesenchymal tissue, and the most susceptible area of occurrence is the metaphysis with its abundant blood supply. Tumors are characterized by highly malignant spindle stromal cells that can produce bone-like tissue. Most of the osteosarcoma are primary, and a few are secondary. Osteosarcoma occurs primarily in children and adolescents undergoing vigorous bone growth and development. Most cases involve rapid tumor development and early blood metastasis. In recent years, research has grown in the areas of molecular biology, imaging medicine, biological materials, applied anatomy, surgical techniques, biomechanics, and comprehensive treatment of tumors. With developments in molecular biology and tissue bioengineering, treatment methods have also made great progress, especially in comprehensive limb salvage treatment, which significantly enhances the quality of life after surgery and improves the 5-year survival rate of patients with malignant tumors. This article provides a review of limb salvage, immunotherapy, gene therapy, and targeted therapy from traditional amputation to neoadjuvant chemotherapy, providing a reference for current clinical treatments for osteosarcoma.


Subject(s)
Biological Products , Bone Neoplasms , Osteosarcoma , Adolescent , Biological Products/therapeutic use , Bone Neoplasms/diagnosis , Bone Neoplasms/pathology , Bone Neoplasms/therapy , Child , Humans , Limb Salvage , Osteosarcoma/drug therapy , Osteosarcoma/therapy , Quality of Life
2.
Technol Cancer Res Treat ; 21: 15330338221119745, 2022.
Article in English | MEDLINE | ID: mdl-35971329

ABSTRACT

Background: TP53 protein is lost or mutated in about half of all types of human cancers and small molecules to regulate mutant p53 repair, or interrupt ubiquitination degradation of p53 induced by E3-ubiquitin ligase Mdm2 have a potential application in clinical application. Methods: To inhibit the deubiquitinase activity of 19S proteasome and restore the p53 protein level, in this study, we utilized p53 knockout mice to test the anti-cancer effect of a specific USP14 and UCH37 inhibitor b-AP15. Results: Our results show that UCHL5, USP14 and COPS5 are upregulated in p53-related tumors, and higher expression of these genes results in a shorter overall survival in patients with p53 deficiency. Treatment with b-AP15, a UCHL5 and USP14 deubiquitinating activity inhibitor in 19S regulatory subunit, induces tumor regression and prolong the survival period of tumor-loaded mice through down-regulation of COPS5 and its downstream AP-1 and E2F1, and up-regulation of the cell cycle-related proteins p27 and Cyclin E1. Conclusions: Thus, our results suggested that inhibition of UCHL5 and USP14 deubiquitinating activity in 19S proteasome may contribute an extensive approach to preventing tumor progress due to p53 deficiency.


Subject(s)
Piperidones , Proteasome Endopeptidase Complex , Animals , Cell Line, Tumor , Humans , Mice , Piperidones/pharmacology , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitination
3.
Front Med (Lausanne) ; 9: 827585, 2022.
Article in English | MEDLINE | ID: mdl-35479959

ABSTRACT

Traumatic brain injury (TBI) is a major global burden of health. As an accepted inflammatory mediator, high mobility group box 1 (HMGB1) is found to be effective in facilitating neurogenesis and axonal regeneration. SH3RF2 (also known as POSHER), an E3 ligase SH3 domain-containing ring finger 2, belongs to the SH3RF family of proteins. Here, we aimed to investigate the role of redox states of HMGB1 on neurite outgrowth and regeneration both in vitro and in vivo. In this study, distinct recombinant HMGB1 redox isoforms were used. Sequencing for RNA-seq and data analysis were performed to find the potential downstream target of nonoxid-HMGB1 (3S-HMGB1). Protein changes and distribution of SH3RF2 were evaluated by western blot assays and immunofluorescence. Lentivirus and adeno-associated virus were used to regulate the expression of genes. Nonoxid-HMGB1-enriched exosomes were constructed and used to treat TBI rats. Neurological function was evaluated by OF test and NOR test. Results demonstrated that nonoxid-HMGB1 and fr-HMGB1, but not ds-HMGB1, promoted neurite outgrowth and axon elongation. RNA-seq and western blot assay indicated a significant increase of SH3RF2 in neurons after treated with nonoxid-HMGB1 or fr-HMGB1. Notably, the beneficial effects of nonoxid-HMGB1 were attenuated by downregulation of SH3RF2. Furthermore, nonoxid-HMGB1 ameliorated cognitive impairment in rats post-TBI via SH3RF2. Altogether, our experimental results suggest that one of the promoting neurite outgrowth and regeneration mechanisms of nonoxid-HMGB1 is mediated through the upregulated expression of SH3RF2. Nonoxid-HMGB1 is an attractive therapeutic candidate for the treatment of TBI.

5.
Biochem Biophys Res Commun ; 505(4): 1003-1009, 2018 11 10.
Article in English | MEDLINE | ID: mdl-30309658

ABSTRACT

Giant-cell tumor (GCT) of the bone is an invasiveness and high recurrent bone tumor that is considered borderline or potentially malignant. To explore the molecular mechanism leading to bone destruction and identify novel targets for treatment, we conducted silencing of miR-223 and miR-19a in stromal giant cells and identified TWIST and Runx2 as their target genes. We investigated the impact of these microRNAs and their target genes on stromal giant cells that promote the differentiation of monocyte/macrophages into osteoclast cells and recruitment to the bone microenvironment, which in turn enhances the bone destruction capacity of GCT. MiR-223 and miR-19a were found to regulate the expression of TWIST and Runx2, influence the RANKL-RANK pathway and the expression of MCP-1, and finally regulate the pathophysiological process of osteolytic bone destruction. Our results indicate that re-expression of miR-223 and miR-19a induces an inhibitory effect on the bone destruction capacity of GCT, suggesting that re-expression of miR-223 and miR-19a can be a novel strategy for the treatment of GCT.


Subject(s)
Bone Neoplasms/metabolism , Down-Regulation , Giant Cell Tumor of Bone/metabolism , MicroRNAs/metabolism , Osteoclasts/metabolism , Bone Neoplasms/pathology , Cell Differentiation , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Giant Cell Tumor of Bone/pathology , Humans , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Osteoclasts/pathology , RANK Ligand/genetics , RANK Ligand/metabolism , Receptor Activator of Nuclear Factor-kappa B/genetics , Receptor Activator of Nuclear Factor-kappa B/metabolism , Tumor Cells, Cultured , Twist-Related Protein 1/genetics , Twist-Related Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...