Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.184
Filter
1.
Brain Res ; : 149121, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38997102

ABSTRACT

Brain injury after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) is the leading cause of neurological dysfunction and death. This study aimed to explore the mechanism of histone deacetylase 6 (HDAC6) in neurofunctional recovery following CA/CPR in rats. A rat model was established by CA/CPR treatment. Adenovirus-packaged sh-HDAC6 was injected into the tail vein. To evaluate the neurofunction of rats, survival time, neurofunctional scores, serum NSE/S100B, and brain water content were measured and Morris water maze test was performed. HDAC6, microRNA (miR)-138-5p, Nod-like receptor protein 3 (NLRP3), and pyroptotic factors levels were determined by real-time quantitative polymerase chain reaction or Western blot assay. HDAC6 and H3K9ac enrichment on miR-138-5p promoter were examined by chromatin immunoprecipitation. miR-138-5p-NLRP3 binding was analyzed by dual-luciferase reporter assay. NLRP3 inflammasome was activated with nigericin sodium salt. After CPR treatment, HDAC6 was highly expressed, while miR-138-5p was downregulated. HDAC6 downregulation improved neurofunction and reduced pyroptosis. HDAC6 enrichment on the miR-138-5p promoter deacetylated H3K9ac, inhibiting miR-138-5p, and promoting NLRP3-mediated pyroptosis. Downregulating miR-138-5p partially reversed the protective effect of HDAC6 inhibition after CPR. In Conclusion, HDAC6 enrichment on miR-138-5p promoter deacetylated H3K9ac, inhibiting miR-138-5p expression and promoting NLRP3-mediated pyroptosis, worsening neurological dysfunction in rats after CPR.

2.
Hemoglobin ; : 1-6, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007770

ABSTRACT

α-thalassemia major (α-TM) often causes Hb Bart's (c4) hydrops fetalis and severe obstetric complications in the mother. Step-wise screening for couples at risk of having offspring(s) affected by α-TM is the efficient prevention method but some rare genotypes of thalassemia cannot be detected. A 32-year-old male with low HbA2 (2.4%) and mild anemia was performed real-time PCR-based multicolor melting curve analysis (MMCA) because his wife was -SEA deletion carrier. The result of multiplex ligation-dependent probe amplification (MLPA) suggested the existence of -SEA deletion in the proband. A novel deletion of the α-globin gene cluster was found using self-designed MLPA probes combined with longer PCR, which was further accurately described to be 16.8Kb (hg38, Chr16:1,65,236-1,82,113) deletion by the third-generation sequencing. A fragment ranging from 1,53,226 to 1,54,538(GRch38/hg38) was identified which suggested the existence of the homologous recombination event. The third-generation sequencing is accurate and efficient in obtaining accurate information for complex structural variations.

3.
J Physiol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979883

ABSTRACT

Volitional modulation of neural activity is not confined to the cortex but extends to various brain regions. Yet, it remains unclear whether neurons in the basal ganglia structure, the external globus pallidus (GPe), can be volitionally controlled. Here, we employed a volitional conditioning task to compare the volitional modulation of GPe and primary motor cortex (M1) neurons as well as the underlying circuits and control mechanisms. The results revealed that the volitional modulation of GPe neuronal activity engaged both M1 and substantia nigra pars reticulata (SNr) neurons, indicating the involvement of the cortex-GPe-SNr loop. In contrast, the volitional modulation of M1 neurons primarily occurred through the engagement of M1 local circuitry. Furthermore, lesioning M1 neurons did not affect the volitional learning or volitional control signal in GPe, whereas lesioning of GPe neurons impaired the learning process for the volitional modulation of M1 neuronal activity at the intermediate stage. Additionally, lesion of GPe neurons enhanced M1 neuronal activity when performing the volitional control task without reward delivery and a random reward test. Taken together, our findings demonstrated that GPe neurons could be volitionally controlled by engagement of the cortical-basal ganglia circuit and inhibit learning process for the volitional modulation of M1 neuronal activity by regulating M1 neuronal activity. Thus, GPe neurons can be effectively harnessed for independent volitional modulation for neurorehabilitation in patients with cortical damage. KEY POINTS: The cortical-basal ganglia circuit contributes to the volitional modulation of GPe neurons. Volitional modulation of M1 neuronal activity mainly engages M1 local circuitry. Bilateral GPe lesioning impedes volitional learning at the intermediate stages. Lesioning of GPe neurons inhibits volitional learning process by regulating M1 neuronal activity.

4.
Korean Circ J ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38956940

ABSTRACT

BACKGROUND AND OBJECTIVES: Angiographic assessment of coronary stenosis severity using quantitative coronary angiography (QCA) is often inconsistent with that based on fractional flow reserve (FFR) or intravascular ultrasound (IVUS). We investigated the incidence of discrepancies between QCA and FFR or IVUS, and the outcomes of FFR- and IVUS-guided strategies in discordant coronary lesions. METHODS: This study was a post-hoc analysis of the FLAVOUR study. We used a QCA-derived diameter stenosis (DS) of 60% or greater, the highest tertile, to classify coronary lesions as concordant or discordant with FFR or IVUS criteria for percutaneous coronary intervention (PCI). The patient-oriented composite outcome (POCO) was defined as a composite of death, myocardial infarction, or revascularization at 24 months. RESULTS: The discordance rate between QCA and FFR or IVUS was 30.2% (n=551). The QCA-FFR discordance rate was numerically lower than the QCA-IVUS discordance rate (28.2% vs. 32.4%, p=0.050). In 200 patients with ≥60% DS, PCI was deferred according to negative FFR (n=141) and negative IVUS (n=59) (15.3% vs. 6.5%, p<0.001). The POCO incidence was comparable between the FFR- and IVUS-guided deferral strategies (5.9% vs. 3.4%, p=0.479). Conversely, 351 patients with DS <60% underwent PCI according to positive FFR (n=118) and positive IVUS (n=233) (12.8% vs. 25.9%, p<0.001). FFR- and IVUS-guided PCI did not differ in the incidence of POCO (9.5% vs. 6.5%, p=0.294). CONCLUSIONS: The proportion of QCA-FFR or IVUS discordance was approximately one third for intermediate coronary lesions. FFR- or IVUS-guided strategies for these lesions were comparable with respect to POCO at 24 months. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02673424.

5.
BMC Med Educ ; 24(1): 780, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030518

ABSTRACT

OBJECTIVE: To explore the application effect of mini clinical evaluation exercise (Mini-CEX) combined with direct observation of procedural skills (DOPS) in the standardized training of general practitioners in community clinics. METHODS: From June 2022 to June 2023,20 general practitioners who received standardized training for residents in the general outpatient department of Changqing Community Health Service Center of Wuhan Fourth Hospital were collected as the research objects. Mini-CEX combined with DOPS was used to evaluate the general practitioners at the time of admission, 2 weeks of training and 4 weeks of training, and the results were fed back. RESULTS: The scores of 20 general practitioners at 2 weeks and 4 weeks of training were compared with the scores at the time of admission, and the difference was statistically significant, p < 0.05. CONCLUSION: Mini-CEX combined with DOPS can improve the teaching effect of standardized training of residents in community general clinics.


Subject(s)
Clinical Competence , Internship and Residency , Humans , Educational Measurement , China , Female , General Practitioners/education , Male , Community Health Services , Adult
6.
Nat Commun ; 15(1): 5713, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977661

ABSTRACT

Cellular senescence is characterized by a decrease in protein synthesis, although the underlying processes are mostly unclear. Chemical modifications to transfer RNAs (tRNAs) frequently influence tRNA activity, which is crucial for translation. We describe how tRNA N7-methylguanosine (m7G46) methylation, catalyzed by METTL1-WDR4, regulates translation and influences senescence phenotypes. Mettl1/Wdr4 and m7G gradually diminish with senescence and aging. A decrease in METTL1 causes a reduction in tRNAs, especially those with the m7G modification, via the rapid tRNA degradation (RTD) pathway. The decreases cause ribosomes to stall at certain codons, impeding the translation of mRNA that is essential in pathways such as Wnt signaling and ribosome biogenesis. Furthermore, chronic ribosome stalling stimulates the ribotoxic and integrative stress responses, which induce senescence-associated secretory phenotype. Moreover, restoring eEF1A protein mitigates senescence phenotypes caused by METTL1 deficiency by reducing RTD. Our findings demonstrate that tRNA m7G modification is essential for preventing premature senescence and aging by enabling efficient mRNA translation.


Subject(s)
Cellular Senescence , Guanosine , Methyltransferases , Protein Biosynthesis , RNA, Transfer , Cellular Senescence/genetics , RNA, Transfer/metabolism , RNA, Transfer/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Guanosine/analogs & derivatives , Guanosine/metabolism , Methylation , Humans , Ribosomes/metabolism , Aging/metabolism , Aging/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Animals , Peptide Elongation Factor 1/metabolism , Peptide Elongation Factor 1/genetics , RNA Stability
7.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38856169

ABSTRACT

Transcriptomic analysis across species is increasingly used to reveal conserved gene regulations which implicate crucial regulators. Cross-species analysis of single-cell RNA sequencing (scRNA-seq) data provides new opportunities to identify the cellular and molecular conservations, especially for cell types and cell type-specific gene regulations. However, few methods have been developed to analyze cross-species scRNA-seq data to uncover both molecular and cellular conservations. Here, we built a tool called CACIMAR, which can perform cross-species analysis of cell identities, markers, regulations, and interactions using scRNA-seq profiles. Based on the weighted sum models of the conserved features, we developed different conservation scores to measure the conservation of cell types, regulatory networks, and intercellular interactions. Using publicly available scRNA-seq data on retinal regeneration in mice, zebrafish, and chick, we demonstrated four main functions of CACIMAR. First, CACIMAR allows to identify conserved cell types even in evolutionarily distant species. Second, the tool facilitates the identification of evolutionarily conserved or species-specific marker genes. Third, CACIMAR enables the identification of conserved intracellular regulations, including cell type-specific regulatory subnetworks and regulators. Lastly, CACIMAR provides a unique feature for identifying conserved intercellular interactions. Overall, CACIMAR facilitates the identification of evolutionarily conserved cell types, marker genes, intracellular regulations, and intercellular interactions, providing insights into the cellular and molecular mechanisms of species evolution.


Subject(s)
Sequence Analysis, RNA , Single-Cell Analysis , Zebrafish , Animals , Single-Cell Analysis/methods , Mice , Zebrafish/genetics , Sequence Analysis, RNA/methods , Species Specificity , Software , Gene Regulatory Networks , Gene Expression Profiling/methods , Chickens , Biomarkers/metabolism , Computational Biology/methods , Gene Expression Regulation
8.
Heliyon ; 10(11): e31744, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38868066

ABSTRACT

Background: Multiple sclerosis (MS) is a heterogeneous autoimmune disease, with a rapidly evolving body of literature on disease-modifying therapy (DMT) that urgently needs to be synthesized and regularized. Methods: The original material used for the analysis was obtained from the Web of Science Core Collection (WoSCC) in the Science Citation Index Expanded Edition (SCI-E). The data material was accessed through VOSviewer, Citespace, R package "Bibliometrix", and Scimago Graphica for data analysis and visualization. Among them, the clustering algorithm based on the Largest Likelihood Ratio (LLR) and the burst citation algorithm is the key. Results: As of November 6th, 2022, 4142 publications related to emerging disease-modifying therapies (e-DMT) for MS, 6521 publications related to traditional disease-modifying therapies (t-DMT) for MS, and 1793 publications in cross-cutting disease-modifying therapies (I-DMT) for MS were included in the analysis, respectively. Publications related to DMT in MS were analyzed descriptively (for three subjects: country, institution, and author) and predictively (for two subjects: keywords and references) separately according to three sections: e-DMT, t-DMT, and I-DMT. Topics that still have relevant reference output as of 2022 include the safety of Coronavirus disease 2019 (COVID-19) mRNA vaccination, therapeutic inertia (TI), cladribine tablets, autologous hematopoietic stem cell transplantation (aHSCT), progressive multiple sclerosis, and pediatric multiple sclerosis. Conclusion: The future research focus for MS DMT is the combination trial or cross-trial of various treatment methods to improve the development of individualized treatment plans for MS patients. The exact contents of the research frontiers are included but not limited to ocrelizumab, fingolimod and other monoclonal antibodies, fumaric acid ester, cladribine tablet, aHSCT, and other interventions of randomized controlled trials (RCTs); the impact of mRNA COVID-19 vaccination on MS patients; TI, patient adherence, and other medical management issues; and continued exploration of biomarkers for more accurate disease classification based on the existing clinical indication classification.

9.
Front Oncol ; 14: 1371307, 2024.
Article in English | MEDLINE | ID: mdl-38863623

ABSTRACT

Background: Triple-negative breast cancer (TNBC) cells are a highly formidable cancer to treat. Nonetheless, by continued investigation into the molecular biology underlying the complex regulation of TNBC cell activity, vulnerabilities can be exposed as potential therapeutic targets at the molecular level. We previously revealed that lysyl oxidase-like 4 (LOXL4) promotes the invasiveness of TNBC cells via cell surface annexin A2 as a novel binding substrate of LOXL4, which promotes the abundant localization of integrin-ß1 at the cancer plasma membrane. However, it has yet to be uncovered how the LOXL4-mediated abundance of integrin-ß1 hastens the invasive outgrowth of TNBC cells at the molecular level. Methods: LOXL4-overexpressing stable clones were established from MDA-MB-231 cells and subjected to molecular analyses, real-time qPCR and zymography to clarify their invasiveness, signal transduction, and matrix metalloprotease (MMP) activity, respectively. Results: Our results show that LOXL4 potently promotes the induction of matrix metalloprotease 9 (MMP9) via activation of nuclear factor-κB (NF-κB). Our molecular analysis revealed that TNF receptor-associated factor 4 (TRAF4) and TGF-ß activated kinase 1 (TAK1) were required for the activation of NF-κB through Iκß kinase kinase (IKKα/ß) phosphorylation. Conclusion: Our results demonstrate that the newly identified LOXL4-mediated axis, integrin-ß1-TRAF4-TAK1-IKKα/ß-Iκßα-NF-κB-MMP9, is crucial for TNBC cell invasiveness.

10.
Child Abuse Negl ; 154: 106866, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38852431

ABSTRACT

BACKGROUND: To examine whether parental corporal punishment is associated with increased risk of concurrent and later sleep disturbances among preschoolers, and whether the association is time-sensitive or dose-responsive. METHODS: This 3-year prospective cohort study used data from the Shanghai Children's Health, Education and Lifestyle Evaluation, Preschool(SCHEDULE-P). Participants were newly enrolled preschoolers in November 2016(wave 1) and followed up in April 2018(wave 2) and April 2019(wave 3). Parents reported the children's corporal punishment experiences and sleep disturbances at each wave survey. Children's risk of sleep disturbances in relation to corporal punishment was examined using logistic regression, adjusting for children's age, gender, emotional/behavioral problems, family annual income, and maternal educational level. RESULTS: The participants of 19,668 children included 9436(47.98 %) females, with a mean age of 3.73(SD = 0.29) years at wave 1. Exposure to corporal punishment was associated with increased odds of concurrent sleep disturbances at wave 1, 2, and 3 (aOR,1.57; 95 % CI, 1.40-1.75; P < .001; aOR,1.60; 95 % CI, 1.43-1.80; P < .001; aOR,1.74; 95 % CI, 1.54-1.95; P < .001), respectively. Exposure to corporal punishment at any wave of preschool was associated with increased odds of sleep disturbances at wave 3, and the risks were greater for proximal and accumulative corporal punishment exposure. CONCLUSION: There is a time-sensitive and dose-responsive association between corporal punishment and sleep disturbance among preschoolers, with greater risk of sleep disturbances for proximal and accumulative exposure of corporal punishment. Promoting positive parenting strategies and avoiding corporal punishment can be a promising strategy to prevent and intervene sleep disturbances in preschoolers.

11.
Mediterr J Hematol Infect Dis ; 16(1): e2024036, 2024.
Article in English | MEDLINE | ID: mdl-38882453

ABSTRACT

The aim of this study was to investigate the prognostic factors of haploid hematopoietic stem cell transplantation in the treatment of X-linked lymphoproliferative syndrome. Seven children with X-linked lymphoproliferative syndrome diagnosed by XIAP gene analysis were enrolled. The conditioning regimens were tolerated in all seven patients, and the median time of neutrophil engraftment was 10 days (8-13 days), and that of platelet engraftment was 21 days (14-24 days). STR-PCR analysis on the peripheral blood cells showed complete donor origins. Four cases developed Grade I acute graft versus host disease (aGVHD), one developed Grade III aGVHD (intestinal tract), and two cases had limited chronic GVHD. Four cases had cytomegalovirus (CMV) reactivation, and two cases had Epstein-Barr virus (EBV) reactivation. One case was diagnosed as pneumocystosis, and thrombotic microangiopathy (TMA) occurred in three cases. During the follow-up period (median time of 42 months), one patient died of TMA and six patients survived. Statistical analysis showed that the status of disease remission and the positive result of virus in blood before transplantation were independent prognostic factors. Haplo-HSCT might be a curative option for children with refractory X-linked lymphoproliferative syndrome. Low-intensity conditioning regimens may reduce transplant-related mortality and improve overall survival.

12.
Oncologist ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902966

ABSTRACT

BACKGROUND: The prognostic significance of lymph node metastasis (LNM) in papillary thyroid carcinoma (PTC) remains controversial. Notably, there is evidence suggesting an association between tissue stiffness and the aggressiveness of the disease. We therefore aimed to explore the effect of tissue stiffness on LNM-related invasiveness in PTC patients. METHOD: A total of 2492 PTC patients from 3 hospitals were divided into an LNM group and a non-LNM group based on their pathological results. The effects of interior lesion stiffness (E) and peri-cancerous tissue stiffness (Eshell) on the LNM-related recurrence rate and mortality in each patient with PTC subgroup were analyzed. The activation of cancer-associated fibroblasts (CAFs) and extracellular matrix component type 1 collagen (COL-I) in the lesion were compared and analyzed across different subgroups. The underlying biological basis of differences in each subgroup was identified using RNA sequencing (RNA-seq) data. RESULTS: The Eshell value and Eshell/E in the LNM group were significantly higher than those in the non-LNM group of patients with PTC (Eshell: 72.72 ±â€…5.63 vs 66.05 ±â€…4.46; Eshell/E: 1.20 ±â€…1.72 vs 1.09 ±â€…1.10, P < .001). When Eshell/E > 1.412 and LNM were both present, the recurrence rate and mortality were significantly increased compared to those of group of patients with LNM (91.67% and 7.29%, respectively). The CAF activation and COL-I content in the Eshell/E+ group were significantly higher than those in the Eshell/E- group (all P < .001), and the RNA-seq results revealed significant extracellular matrix (ECM) remodeling in the LNM-Eshell/E+ group. CONCLUSIONS: Stiff peri-cancerous tissue induced CAF activation, COL-I deposition, and ECM remodeling, resulting in a poor prognosis for PTC patients with LNM.

13.
Chem Commun (Camb) ; 60(51): 6556-6559, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38845407

ABSTRACT

Herein, a novel strategy is presented for the photoinduced decarboxylative and dehydrogenative cross-coupling of a wide range of α-fluoroacrylic acids with hydrogermanes. This methodology provides an efficient and robust approach for producing various germylated monofluoroalkenes with excellent stereoselectivity within a brief photoirradiation period. The feasibility of this reaction has been demonstrated through gram-scale reaction, conversion of germylated monofluoroalkenes, and modification of complex organic molecules.

14.
Int J Womens Health ; 16: 1023-1032, 2024.
Article in English | MEDLINE | ID: mdl-38835833

ABSTRACT

Objective: To investigate the potential protective impact of miR-10a-modified HUMSCs-derived exosomes on both premature ovarian failure and the functionality of ovarian granulosa cells in a POF model. Methods: KGN cells were co-cultured with cisplatin-diaminedichloroplatinum (II) (10 µM) for 24 h to establish an in vitro POF model. The cells were distributed into three distinct groups: the control group, the POF group, and the POF + HUCMSC group. The plasmid sh-NC, sh-miR-10 a and miR-10 a mimic were transfected into KGN cells. After co-cultured with HUCMSC-EVs for 48 h, they were divided into HUCMSC group, sh-miR-10 a-HUMSCs-exosomes group and miR-10 a-HUMSCs-exosomes group. Flow cytometry was adopted to assess the impact of HUMSCs surface immune antigens and miR-10a-HUCMSCs-exosomes on KGN cell apoptosis. Additionally, the evaluation of cell proliferation was carried out through CCK-8 and EDU assays. Western blot analysis was utilized to detect the Caspase-3, Bax, and Bcl-2 proteins levels. Furthermore, the levels of TNF-α, IL-6, IL-10, MDA, SOD, and CAT were quantified using ELISA. Results: Compared with the Control group, the POF group inhibited the growth of ovarian granulosa cells (P<0.01), reduced the number of EDU cells (P<0.01), and increased the protein expression of Caspase-3 (P<0.05) and Bax (P<0.01). HUMSCs treatment significantly down-regulated the expression of IL-6, TNF-α and MDA, while up-regulating the expression of IL-10, SOD and CAT (P<0.01); the overexpression of miR-10a promoted cell growth, besides, the introduction of miR-10a-HUMSCs-derived exosomes led to an elevation in the proliferation rate of OGCs affected by POF and concurrently suppressed the apoptosis rate. Conclusion: HUMSCs-derived exosomes modified by miR-10a have protective effects on premature ovarian failure and ovarian granulosa cell function in POF model.

15.
Gigascience ; 132024 Jan 02.
Article in English | MEDLINE | ID: mdl-38869151

ABSTRACT

BACKGROUND: The Coreopsideae tribe, a subset of the Asteraceae family, encompasses economically vital genera like Dahlia, Cosmos, and Bidens, which are widely employed in medicine, horticulture, ecology, and food applications. Nevertheless, the lack of reference genomes hinders evolutionary and biological investigations in this tribe. RESULTS: Here, we present 3 haplotype-resolved chromosome-level reference genomes of the tribe Coreopsideae, including 2 popular flowering plants (Dahlia pinnata and Cosmos bipinnatus) and 1 invasive weed plant (Bidens alba), with assembled genome sizes 3.93 G, 1.02 G, and 1.87 G, respectively. We found that Gypsy transposable elements contribute mostly to the larger genome size of D. pinnata, and multiple chromosome rearrangements have occurred in tribe Coreopsideae. Besides the shared whole-genome duplication (WGD-2) in the Heliantheae alliance, our analyses showed that D. pinnata and B. alba each underwent an independent recent WGD-3 event: in D. pinnata, it is more likely to be a self-WGD, while in B. alba, it is from the hybridization of 2 ancestor species. Further, we identified key genes in the inulin metabolic pathway and found that the pseudogenization of 1-FEH1 and 1-FEH2 genes in D. pinnata and the deletion of 3 key residues of 1-FFT proteins in C. bipinnatus and B. alba may probably explain why D. pinnata produces much more inulin than the other 2 plants. CONCLUSIONS: Collectively, the genomic resources for the Coreopsideae tribe will promote phylogenomics in Asteraceae plants, facilitate ornamental molecular breeding improvements and inulin production, and help prevent invasive weeds.


Subject(s)
Evolution, Molecular , Genome, Plant , Inulin , Polyploidy , Inulin/metabolism , Asteraceae/genetics , Phylogeny , Bidens/genetics , Bidens/metabolism , Genome Size
16.
Bioorg Med Chem ; 106: 117753, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749342

ABSTRACT

The expression of prostate-specific membrane antigen (PSMA) in prostate cancer is 100-1000 times higher than that in normal tissues, and it has shown great advantages in the diagnosis and treatment of prostate cancer. The combination of PSMA and PET imaging technology based on the principle of metabolic imaging can achieve high sensitivity and high specificity for diagnosis. Due to its suitable half-life (109 min) and good positron abundance (97%), as well as its cyclotron accelerated generation, 18F has the potential to be commercialize, which has attracted much attention. In this article, we synthesized a series of fluorosulfate PET tracers targeting PSMA. All four analogues have shown high affinity to PSMA (IC50 = 1.85-5.15 nM). After the radioisotope exchange labeling, [18F]L9 and [18F]L10 have PSMA specific cellular uptake (0.65 ± 0.04% AD and 1.19 ± 0.03% AD) and effectively accumulated in 22Rv1 xenograft mice model. This study demonstrates that PSMA-1007-based PSMA-targeted aryl [18F]fluorosulfate novel tracers have the potential for PET imaging in tumor tissues.


Subject(s)
Antigens, Surface , Drug Design , Fluorine Radioisotopes , Positron-Emission Tomography , Radiopharmaceuticals , Animals , Humans , Male , Fluorine Radioisotopes/chemistry , Mice , Antigens, Surface/metabolism , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Glutamate Carboxypeptidase II/metabolism , Molecular Structure , Cell Line, Tumor , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/metabolism , Structure-Activity Relationship
17.
Purinergic Signal ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38802651

ABSTRACT

Obesity refers to the excessive accumulation of fat caused by a long-term imbalance between energy intake (EI) and energy expenditure (EE). Over recent years, obesity has become a major public health challenge. Caffeine is a natural product that has been demonstrated to exert anti-obesity effects; however, the mechanisms responsible for the effect of caffeine on weight loss have yet to be fully elucidated. Most obesity-related deaths are due to cardiovascular disease. Recent research has demonstrated that caffeine can reduce the risk of death from cardiovascular disease; thus, it can be hypothesized that caffeine may represent a new therapeutic agent for weight loss. In this review, we synthesize data arising from clinical and animal studies over the last decade and discuss the potential mechanisms by which caffeine may induce weight loss, focusing particularly on increasing energy consumption, suppressing appetite, altering lipid metabolism, and influencing the gut microbiota. Finally, we summarize the major challenges associated with caffeine and anti-obesity research and highlight possible directions for future research and development.

18.
Environ Int ; 187: 108722, 2024 May.
Article in English | MEDLINE | ID: mdl-38733765

ABSTRACT

Chinese children are exposed to broad environmental risks ranging from well-known hazards, such as pesticides and heavy metals, to emerging threats including many new man-made chemicals. Although anecdotal evidence suggests that the exposure levels in Chinese children are substantially higher than those of children in developed countries, a systematic assessment is lacking. Further, while these exposures have been linked to a variety of childhood diseases, such as respiratory, endocrine, neurological, behavioral, and malignant disorders, the magnitude of the associations is often unclear. This review provides a current epidemiologic overview of commonly reported environmental contaminants and their potential impact on children's health in China. We found that despite a large volume of studies on various topics, there is a need for more high-quality research and better-coordinated regional and national data collection. Moreover, prevention of such diseases will depend not only on training of environmental health professionals and enhanced research programs, but also on public education, legislation, and networking.


Subject(s)
Child Health , Environmental Exposure , Environmental Pollutants , Humans , China , Child , Environmental Pollutants/analysis , Child, Preschool , Pesticides/analysis
19.
J Chem Phys ; 160(19)2024 May 21.
Article in English | MEDLINE | ID: mdl-38752535

ABSTRACT

3,4-bis(3-nitrofurazan-4-yl) furoxan (DNTF) is one of the third-generation energetic compounds with excellent comprehensive properties, which can be added to polymer bonded explosive (PBX) to improve energy levels and regulate sensitivity, so the compatibility of DNTF with other components in PBX, especially the binder, is the first question. Herein, two typical hydrocarbon polymers commonly used in PBX, which are hydroxyl-terminated polybutadiene (HTPB) and polyisobutylene (PIB), were selected as the binder, and the compatibility of HTPB and PIB with DNTF was investigated by differential scanning calorimetry (DSC), the vacuum stability test (VST), and in situ infrared spectroscopy (in situ IR). The results of compatibility experiments were verified by using the binding energy and solubility parameter criteria in molecular dynamics (MD). Experimental and MD simulation results showed that DNTF could be compatible with PIB but incompatible with HTPB. The frontier molecular orbital theory in quantum chemistry (QC) was adopted to explore the frontier orbital electron distribution and energy levels of DNTF/HTPB and DNTF/PIB composite systems to better understand the microscopic compatibility mechanism. The compatibility results of the two composite systems were explained from the perspective of electron transfer. All these can deduce that a hydrocarbon polymer binder with a saturated carbon-hydrogen bond at the end of the molecular chain has good compatibility with DNTF, compared with a hydroxyl group, which has bad compatibility with DNTF.

20.
Methods ; 226: 164-175, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702021

ABSTRACT

Ensuring the safety and efficacy of chemical compounds is crucial in small-molecule drug development. In the later stages of drug development, toxic compounds pose a significant challenge, losing valuable resources and time. Early and accurate prediction of compound toxicity using deep learning models offers a promising solution to mitigate these risks during drug discovery. In this study, we present the development of several deep-learning models aimed at evaluating different types of compound toxicity, including acute toxicity, carcinogenicity, hERG_cardiotoxicity (the human ether-a-go-go related gene caused cardiotoxicity), hepatotoxicity, and mutagenicity. To address the inherent variations in data size, label type, and distribution across different types of toxicity, we employed diverse training strategies. Our first approach involved utilizing a graph convolutional network (GCN) regression model to predict acute toxicity, which achieved notable performance with Pearson R 0.76, 0.74, and 0.65 for intraperitoneal, intravenous, and oral administration routes, respectively. Furthermore, we trained multiple GCN binary classification models, each tailored to a specific type of toxicity. These models exhibited high area under the curve (AUC) scores, with an impressive AUC of 0.69, 0.77, 0.88, and 0.79 for predicting carcinogenicity, hERG_cardiotoxicity, mutagenicity, and hepatotoxicity, respectively. Additionally, we have used the approved drug dataset to determine the appropriate threshold value for the prediction score in model usage. We integrated these models into a virtual screening pipeline to assess their effectiveness in identifying potential low-toxicity drug candidates. Our findings indicate that this deep learning approach has the potential to significantly reduce the cost and risk associated with drug development by expediting the selection of compounds with low toxicity profiles. Therefore, the models developed in this study hold promise as critical tools for early drug candidate screening and selection.


Subject(s)
Deep Learning , Humans , Drug Discovery/methods , Animals , Drug-Related Side Effects and Adverse Reactions , Cardiotoxicity/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...