Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.671
Filter
1.
Nanoscale ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949270

ABSTRACT

In carbon allotropes, a series of topological semi-metals have been predicted, but both novel electronic properties and mechanical characteristics, e.g., a negative Poisson's ratio (NPR), are rarely discovered in the same sp2 type system. Here, a new three-dimensional carbon network, named WZGN, constructed from distorted one-dimensional zigzag graphene nanoribbons is proposed. The stability of the system is fully ensured by the phonon dispersion, AIMD simulation, and binding energy calculations. Besides, it is found that the system holds both topologically protected nodal line semi-metal properties together with an NPR property. Especially, the value of the NPR can exceed -0.36 when 21% uniaxial tensile strain along the c'-direction is applied. Our findings point out that nodal line semi-metals can be compatible with intrinsic NPR properties in a wide strain range in carbon systems with sp2 hybridization, suggesting possible applications in mechanical and electronics fields.

2.
Org Lett ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949597

ABSTRACT

Minisci-type dehydrogenative coupling of C(sp3)-H and N-heteroaromatics was performed with N-hydroxysuccinimide as a hydrogen atom transfer catalyst in a photoelectrochemical cell composed of a mesoporous BiVO4 photoanode and a Pt electrode. In the absence of metal catalysts and chemical oxidants, a range of N-heteroarenes (e.g., quinolines, isoquinolines, and quinoxaline) can undergo coupling with various C(sp3)-H partners to form the corresponding products in excellent yields.

3.
Expert Opin Drug Deliv ; : 1-15, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38946471

ABSTRACT

INTRODUCTION: Understanding the interactions between administered nanoparticles and the liver is crucial for developing safe and effective nanomedicines. As the liver can sequester up to 99% of these particles due to its major phagocytic role, understanding these interactions is vital for clinical translation. AREAS COVERED: This review highlights recent studies on nanoparticle-liver interactions, including the influence of nanoparticle physicochemical properties on delivery, strategies to enhance delivery efficiency by modulating liver Kupffer cells, and their potential for treating certain hepatic diseases. Additionally, we discuss how aging impacts the liver's phagocytic functions. EXPERT OPINION: While liver accumulation can hinder nanomedicine safety and effectiveness, it also presents opportunities for treating certain liver diseases. A thorough understanding of nanoparticle-liver interactions is essential for advancing the clinical application of nanomedicines.

4.
Nat Commun ; 15(1): 5502, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951519

ABSTRACT

Resistance to chemotherapy has been a major hurdle that limits therapeutic benefits for many types of cancer. Here we systematically identify genetic drivers underlying chemoresistance by performing 30 genome-scale CRISPR knockout screens for seven chemotherapeutic agents in multiple cancer cells. Chemoresistance genes vary between conditions primarily due to distinct genetic background and mechanism of action of drugs, manifesting heterogeneous and multiplexed routes towards chemoresistance. By focusing on oxaliplatin and irinotecan resistance in colorectal cancer, we unravel that evolutionarily distinct chemoresistance can share consensus vulnerabilities identified by 26 second-round CRISPR screens with druggable gene library. We further pinpoint PLK4 as a therapeutic target to overcome oxaliplatin resistance in various models via genetic ablation or pharmacological inhibition, highlighting a single-agent strategy to antagonize evolutionarily distinct chemoresistance. Our study not only provides resources and insights into the molecular basis of chemoresistance, but also proposes potential biomarkers and therapeutic strategies against such resistance.


Subject(s)
Antineoplastic Agents , CRISPR-Cas Systems , Drug Resistance, Neoplasm , Irinotecan , Oxaliplatin , Protein Serine-Threonine Kinases , Drug Resistance, Neoplasm/genetics , Humans , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Oxaliplatin/pharmacology , Irinotecan/pharmacology , CRISPR-Cas Systems/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Animals , Neoplasms/genetics , Neoplasms/drug therapy , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Mice , Gene Expression Regulation, Neoplastic/drug effects
5.
Org Lett ; 26(25): 5329-5334, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38869223

ABSTRACT

Multisubstituted furans occupy a pivotal position within the realms of synthetic chemistry and pharmacological science due to their distinctive chemical configurations and inherent properties. We herein introduce a tandem difunctionalization protocol of alcohols for the efficient synthesis of multisubstituted 2,3-dihydrofurans and γ-butyrolactones through the combination of photocatalysis and iron catalysis under mild conditions. Photoredox alcohol α-C(sp3)-H activation and Pinner-type intramolecular cyclization are two key processes. This method features significant convenience, economic benefits, and environmental friendliness.

6.
bioRxiv ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38854064

ABSTRACT

The Escherichia coli heteromeric acetyl-CoA carboxylase (ACC) has four subunits assumed to form an elusive catalytic complex and are involved in allosteric and transcriptional regulation. The E. coli ACC represents almost all ACCs from pathogenic bacteria making it a key antibiotic development target to fight growing antibiotic resistance. Furthermore, it is a model for cyanobacterial and plant plastid ACCs as biofuel engineering targets. Here we report the catalytic E. coli ACC complex surprisingly forms tubes rather than dispersed particles. The cryo-EM structure reveals key protein-protein interactions underpinning efficient catalysis and how transcriptional regulatory roles are masked during catalysis. Discovering the protein-protein interaction interfaces that facilitate catalysis, allosteric and transcriptional regulation provides new routes to engineering catalytic activity and new targets for drug discovery.

7.
Front Pharmacol ; 15: 1374158, 2024.
Article in English | MEDLINE | ID: mdl-38887554

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is marked by hepatic steatosis accompanied by an inflammatory response. At present, there are no approved therapeutic agents for NAFLD. Dendrobium Huoshanense polysaccharide (DHP), an active ingredient extracted from the stems of Dendrobium Huoshanense, and exerts a protective effect against liver injury. However, the therapeutic effects and mechanisms of action DHP against NAFLD remain unclear. DHP was extracted, characterized, and administered to mice in which NAFLD had been induced with a high-fat and high-fructose drinking (HFHF) diet. Our results showed that DHP used in this research exhibits the characteristic polysaccharide peak with a molecular weight of 179.935 kDa and is composed primarily of Man and Glc in a molar ratio of 68.97:31.03. DHP treatment greatly ameliorated NAFLD by significantly reducing lipid accumulation and the levels of liver function markers in HFHF-induced NAFLD mice, as evidenced by decreased serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol (TC) and total triglyceride (TG). Furthermore, DHP administration reduced hepatic steatosis, as shown by H&E and Oil red O staining. DHP also inhibited the Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway expression, thereby reducing levels of hepatic proinflammatory cytokines. Besides, untargeted metabolomics further indicated that 49 metabolites were affected by DHP. These metabolites are strongly associated the metabolism of glycine, serine, threonine, nicotinate and nicotinamide, and arachidonic acid. In conclusion, DHP has a therapeutic effect against NAFLD, whose underlying mechanism may involve the modulation of TLR4/NF-κB, reduction of inflammation, and regulation of the metabolism of glycine, serine, threonine, nicotinate and nicotinamide metabolism, and arachidonic acid metabolism.

8.
Insights Imaging ; 15(1): 136, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853188

ABSTRACT

OBJECTIVE: To investigate the value of Dixon magnetic resonance imaging (MRI)-based quantitative parameters of extraocular muscles (EOMs), intraorbital fat (IF), and lacrimal glands (LGs) in staging patients with thyroid-associated ophthalmopathy (TAO). METHODS: Two hundred patients with TAO (211 active and 189 inactive eyes) who underwent Dixon MRI for pretreatment evaluation were retrospectively enrolled and divided into training (169 active and 151 inactive eyes) and validation (42 active and 38 inactive eyes) cohorts. The maximum, mean, and minimum values of the signal intensity ratio (SIR), fat fraction (FF), and water fraction (WF) of EOMs, IF, and LGs were measured and compared between the active and inactive groups in the training cohort. Binary logistic regression analysis, receiver operating characteristic curve analysis, and the Delong test were used for further statistical analyses, as appropriate. RESULTS: Compared with inactive TAOs, active TAOs demonstrated significantly greater EOM-SIRmax, EOM-SIRmean, EOM-SIRmin, IF-SIRmax, IF-SIRmean, LG-SIRmax, LG-SIRmean, EOM-WFmean, EOM-WFmin, IF-WFmax, IF-WFmean, and LG-WFmean and lower EOM-FFmax, EOM-FFmean, IF-FFmean, IF-FFmin, and LG-FFmean values (all p < 0.05). The EOM-SIRmean, LG-SIRmean, and LG-FFmean values were independently associated with active TAO (all p < 0.05). The combination of the EOM-SIRmean, LG-SIRmean, and LG-FFmean values showed better performance than the EOM-SIRmean value alone in staging TAO in both the training (AUC, 0.820 vs 0.793; p = 0.016) and validation (AUC, 0.751 vs 0.733, p = 0.341) cohorts. CONCLUSION: Dixon MRI-based parameters of EOMs, LGs, and IF are useful for differentiating active from inactive TAO. The integration of multiple parameters can further improve staging performance. CRITICAL RELEVANCE STATEMENT: In this study, the authors explored the combined value of quantitative parameters of EOMs, IF, and LGs derived from Dixon MRI in staging TAO patients, which can support the establishment of a proper therapeutic plan. KEY POINTS: The quantitative parameters of EOMs, LGs, and IF are useful for staging TAO. The EOM-SIRmean, LG-SIRmean, and LG-FFmean values were found to independently correlate with active TAO. Joint evaluation of orbital tissue improved the ability to assess TAO activity.

9.
J Nutr Biochem ; 131: 109672, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823542

ABSTRACT

Hypothyroidism and subclinical hypothyroidism were both characterized by elevated levels of thyroid stimulating hormone (TSH). Previous studies had found that high iodine or hyperlipidemia alone was associated with increased TSH level. However, their combined effects on TSH have not been elucidated. In this study, combination of high iodine and hyperlipidemia was established through the combined exposure of high-water iodine and high fat diet in Wistar rats. The results showed that combined exposure of high iodine and high fat can induce higher TSH level. The mRNA and protein levels of sodium iodide transporters (NIS) and type 1 deiodinase (D1) in thyroid tissues, which were crucial genes in the synthesis of thyroid hormones, decreased remarkably in combined exposure group. Mechanistically, down-regulated long non-coding RNA (lncRNA) metastasis associated in lung denocarcinoma transcript 1 (MALAT1) may regulate the expression of NIS by increasing miR-339-5p, and regulating D1 by increasing miR-224-5p. Then, the above findings were explored in subjects exposed to high water iodine and hyperlipidemia. The results indicated that in population combined with high iodine and hyperlipidemia, TSH level increased to higher level and lncRNA MALAT1-miR-339-5p-NIS axis was obviously activated. Collectively, this study found that combined exposure of high iodine and hyperlipidemia induced a higher level of TSH, and lncRNA MALAT1-miR-339-5p-NIS axis may play important role.

10.
Adv Mater ; : e2404232, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934440

ABSTRACT

Pairing the positive and negative electrodes with their individual dynamic characteristics at a realistic cell level is essential to the practical optimal design of electrochemical energy storage devices. However, the complex relationship between the performance data measured for individual electrodes and the two-electrode cells used in practice often makes an optimal pairing experimentally challenging. Taking advantage of the developed tunable graphene-based electrodes with controllable structure, experiments with machine learning are successfully united to generate a large pool of capacitance data for graphene-based electrode materials with varied slit pore sizes, thicknesses, and charging rates and numerically pair them into different combinations for two-electrode cells. The results show that the optimal pairing parameters of positive and negative electrodes vary considerably with the operation rate of the cells and are even influenced by the thickness of inactive components. The best-performing individual electrode does not necessarily result in optimal cell-level performance. The machine learning-assisted pairing approach presents much higher efficiency compared with the traditional trial-and-error approach for the optimal design of supercapacitors. The new engineering science insights observed in this work enable the adoption of artificial intelligence techniques to efficiently translate well-developed high-performance individual electrode materials into real energy storage devices.

11.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892254

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. Known as COVID-19, it has affected billions of people worldwide, claiming millions of lives and posing a continuing threat to humanity. This is considered one of the most extensive pandemics ever recorded in human history, causing significant losses to both life and economies globally. However, the available evidence is currently insufficient to establish the effectiveness and safety of antiviral drugs or vaccines. The entry of the virus into host cells involves binding to angiotensin-converting enzyme 2 (ACE2), a cell surface receptor, via its spike protein. Meanwhile, transmembrane protease serine 2 (TMPRSS2), a host surface protease, cleaves and activates the virus's S protein, thus promoting viral infection. Plant protease inhibitors play a crucial role in protecting plants against insects and/or microorganisms. The major storage proteins in sweet potato roots include sweet potato trypsin inhibitor (SWTI), which accounts for approximately 60% of the total water-soluble protein and has been found to possess a variety of health-promoting properties, including antioxidant, anti-inflammatory, ACE-inhibitory, and anticancer functions. Our study found that SWTI caused a significant reduction in the expression of the ACE2 and TMPRSS2 proteins, without any adverse effects on cells. Therefore, our findings suggest that the ACE2 and TMPRSS2 axis can be targeted via SWTI to potentially inhibit SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents , Ipomoea batatas , SARS-CoV-2 , Serine Endopeptidases , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Animals , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Ipomoea batatas/virology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19/virology , COVID-19/metabolism , Trypsin Inhibitors/pharmacology , Trypsin Inhibitors/metabolism , Virus Internalization/drug effects , Chlorocebus aethiops , Vero Cells , Down-Regulation/drug effects , Mice
12.
ACS Appl Mater Interfaces ; 16(24): 31480-31488, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38838344

ABSTRACT

The alkaline hydrogen evolution reaction (HER) is intricately linked to the water dissociation kinetics. The quest for new strategies to accelerate this step is a pivotal aspect of enhancing the HER performance. Herein, we designed and synthesized a heterogeneous nickel phosphide/cobalt phosphide nanowire array grown on nickel foam (Ni2P/CoP/NF) to form a p-n junction structure. The built-in electric field (BEF) in the p-n junction optimizes the binding ability of hydrogen and hydroxyl intermediates, efficiently promoting water dissociation for the alkaline HER. Consequently, Ni2P/CoP/NF exhibits a lower overpotential of 58 and 118 mV at 30 and 100 mA cm-2, respectively, and high stability over 40 h at 300 mA cm-2 for the HER in 1 M KOH. Computational calculations combined with experiment results testify that the BEF presence in the p-n junction of Ni2P/CoP/NF effectively promotes water dissociation, regulates intermediate adsorption/desorption, and boosts electron transport. This study presents a rational design approach for high-performance heterogeneous electrocatalysts.

13.
J Cancer Res Clin Oncol ; 150(6): 302, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856753

ABSTRACT

PURPOSE: Nowadays, cyclin-dependent kinase 4/6 (CDK4/6) inhibitors have been approved for treating metastatic breast cancer and have achieved inspiring curative effects. But some discoveries have indicated that CDK 4/6 are not the requisite factors in some cell types because CDK2 partly compensates for the inhibition of CDK4/6. Thus, it is urgent to design CDK2/4/6 inhibitors for significantly enhancing their potency. This study aims to explore the mechanism of the binding of CDK2/4/6 kinases and their inhibitors to design novel CDK2/4/6 inhibitors for significantly enhancing their potency in different kinds of cancers. MATERIALS AND METHODS: A series of 72 disparately functionalized 4-substituted N-phenylpyrimidin-2-amine derivatives exhibiting potent inhibitor activities against CDK2, CDK4 and CDK6 were collected to apply to this research. The total set of these derivatives was divided into a training set (54 compounds) and a test set (18 compounds). The derivatives were constructed through the sketch molecule module in SYBYL 6.9 software. A Powell gradient algorithm and Tripos force field were used to calculate the minimal structural energy and the minimized structure was used as the initial conformation for molecular docking. By the means of 3D-QSAR models, partial least squares (PLS) analysis, molecular dynamics (MD) simulations and binding free energy calculations, we can find the relationship between structure and biological activity. RESULTS: In this study, we used molecular docking, 3D-QSAR and molecular dynamics simulation methods to comprehensively analyze the interaction and structure-activity relationships of 72 new CDK2/4/6 inhibitors. We used detailed statistical data to reasonably verify the constructed 3D-QSAR models for three receptors (q2 of CDK2 = 0.714, R2pred = 0.764, q2 = 0.815; R2pred of CDK4 = 0.681, q2 = 0.757; R2pred of CDK6 = 0.674). MD simulations and decomposition energy analysis validated the reasonability of the docking results and identified polar interactions as crucial factors that influence the different bioactivities of the studied inhibitors of CDK2/4/6 receptors, especially the electrostatic interactions of Lys33/35/43 and Asp145/158/163. The nonpolar interaction with Ile10/12/19 was also critical for the differing potencies of the CDK2/4/6 inhibitors. We concluded that the following probably enhanced the bioactivity against CDK2/4/6 kinases: (1) electronegative groups at the N1-position and electropositive and moderate-sized groups at ring E; (2) electrogroups featured at R2; (3) carbon atoms at the X-position or ring C replaced by a benzene ring; and (4) an electrogroup as R4. CONCLUSION: Previous studies, to our knowledge, only utilized a single approach of 3D-QSAR and did not integrate this method with other sophisticated techniques such as molecular dynamics simulations to discover new potential inhibitors of CDK2, CDK4, or CDK6. So we applied the intergenerational technology, such as 3D-QSAR technology, molecular docking simulation techniques, molecular dynamics simulations and MMPBSA19/MMGBSA20-binding free energy calculations to statistically explore the correlations between the structure with biological activities. The constructed 3D-QSAR models of the three receptors were reasonable and confirmed by the excellent statistical data. We hope the results obtained from this work will provide some useful references for the development of novel CDK2/4/6 inhibitors.


Subject(s)
Cyclin-Dependent Kinase 2 , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Kinase Inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 6/chemistry , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/chemistry , Humans , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 2/chemistry , Pyrimidines/chemistry , Pyrimidines/pharmacology , Quantitative Structure-Activity Relationship
14.
J Med Virol ; 96(5): e29640, 2024 May.
Article in English | MEDLINE | ID: mdl-38699969

ABSTRACT

After the termination of zero-COVID-19 policy, the populace in China has experienced both Omicron BA.5 and XBB waves. Considering the poor antibody responses and severe outcomes observed among the elderly following infection, we conducted a longitudinal investigation to examine the epidemiological characteristics and antibody kinetics among 107 boosted elderly participants following the Omicron BA.5 and XBB waves. We observed that 96 participants (89.7%) were infected with Omicron BA.5, while 59 (55.1%) participants were infected with Omicron XBB. Notably, 52 participants (48.6%) experienced dual infections of both Omicron BA.5 and XBB. The proportion of symptomatic cases appeared to decrease following the XBB wave (18.6%) compared to that after the BA.5 wave (59.3%). Omicron BA.5 breakthrough infection induced lower neutralizing antibody titers against XBB.1.5, BA.2.86, and JN.1, while reinfection with Omicron XBB broadened the antibody responses against all measured Omicron subvariants and may alleviate the wild type-vaccination induced immune imprinting. Boosted vaccination type and comorbidities were the significant factors associated with antibody responses. Updated vaccines based on emerging severe acute respiratory syndrome coronavirus 2 variants are needed to control the Coronavirus Disease 2019 pandemic in the elderly.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunization, Secondary , SARS-CoV-2 , Humans , Aged , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Male , Female , Longitudinal Studies , China/epidemiology , SARS-CoV-2/classification , SARS-CoV-2/physiology , Antibodies, Neutralizing , Kinetics , Antibodies, Viral/blood , Reinfection/epidemiology
15.
Front Microbiol ; 15: 1393127, 2024.
Article in English | MEDLINE | ID: mdl-38690369

ABSTRACT

Bovine respiratory syncytial virus (BRSV) is an RNA virus with envelope that causes acute, febrile, and highly infectious respiratory diseases in cattle. However, the manner and mechanism of BRSV entry into cells remain unclear. In this study, we aimed to explore the entry manner of BRSV into MDBK cells and its regulatory mechanism. Our findings, based on virus titer, virus copies, western blot and IFA analysis, indicate that BRSV enters MDBK cells through endocytosis, relying on dynamin, specifically via clathrin-mediated endocytosis rather than caveolin-mediated endocytosis and micropinocytosis. We observed that the entered BRSV initially localizes in early endosomes and subsequently localizes in late endosomes. Additionally, our results of western blot, virus titer and virus copies demonstrate that BRSV entry through clathrin-mediated endocytosis is regulated by PI3K-Akt and Src-JNK signaling pathways. Overall, our study suggests that BRSV enters MDBK cells through clathrin-mediated endocytosis, entered BRSV is trafficked to late endosome via early endosome, BRSV entry through clathrin-mediated endocytosis is regulated by PI3K-Akt and Src-JNK signaling pathways.

16.
Neurooncol Pract ; 11(3): 266-274, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38737610

ABSTRACT

Background: Glioblastoma (GBM) poses therapeutic challenges due to its aggressive nature, particularly for patients with poor functional status and/or advanced disease. Hypofractionated radiotherapy (RT) regimens have demonstrated comparable disease outcomes for this population while allowing treatment to be completed more quickly. Here, we report our institutional outcomes of patients treated with 2 hypofractionated RT regimens: 40 Gy/15fx (3w-RT) and 50 Gy/20fx (4w-RT). Methods: A single-institution retrospective analysis was conducted of 127 GBM patients who underwent 3w-RT or 4w-RT. Patient characteristics, treatment regimens, and outcomes were analyzed. Univariate and multivariable Cox regression models were used to estimate progression-free survival (PFS) and overall survival (OS). The impact of chemotherapy and RT schedule was explored through subgroup analyses. Results: Median OS for the entire cohort was 7.7 months. There were no significant differences in PFS or OS between 3w-RT and 4w-RT groups overall. Receipt and timing of temozolomide (TMZ) emerged as the variable most strongly associated with survival, with patients receiving adjuvant-only or concurrent and adjuvant TMZ having significantly improved PFS and OS (P < .001). In a subgroup analysis of patients that did not receive TMZ, patients in the 4w-RT group demonstrated a trend toward improved OS as compared to the 3w-RT group (P = .12). Conclusions: This study demonstrates comparable survival outcomes between 3w-RT and 4w-RT regimens in GBM patients. Receipt and timing of TMZ were strongly associated with survival outcomes. The potential benefit of dose-escalated hypofractionation for patients not receiving chemotherapy warrants further investigation and emphasizes the importance of personalized treatment approaches.

17.
Epilepsia Open ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795316

ABSTRACT

OBJECTIVES: Existing data regarding the risk of COVID-19 infection and its effects on seizure control in patients with epilepsy (PWE) are inconclusive. Our research aims to investigate the PWE who are susceptible to COVID-19 and what factors contribute to seizure exacerbation. METHODS: From Dec 28, 2022 to Feb 19, 2023, a cross-sectional questionnaire survey among adult PWE was conducted. The demographics, epilepsy-related information, COVID-19-related variables, and seizure outcomes after COVID-19 infection were collected. Multivariate logistic analyses were performed to determine the risk factors associated with COVID-19 infection and exacerbated seizures. RESULTS: Of 1557 PWE, 829 (53.2%) were infected with COVID-19 and 136 (16.4%) developed seizure exacerbation after COVID-19 infection. Overweight/obesity (OR 1.372, 95% CI 1.075-1.753, p = 0.011), immunocompromised (OR 3.301, 95% CI 1.093-9.974, p = 0.031), active epilepsy (OR 1.700, 95% CI 1.378-2.097, p < 0.001), and antiseizure medication (ASM) polytherapy (OR 1.314, 95% CI 1.065-1.621, p = 0.011) were associated with COVID-19 infection. Active epilepsy (OR 4.696, 95% CI 2.568-8.586, p < 0.001) and fever-associated seizures (OR 4.298, 95%CI 2.659-6.946, p < 0.001) were associated with seizure exacerbation. SIGNIFICANCE: PWE with overweight/obesity, immunocompromised, active epilepsy, and ASM polytherapy were at higher risk of COVID-19 infection. Once infected with COVID-19, seizures were exacerbated in PWE with active epilepsy and fever-associated seizures. PLAIN LANGUAGE SUMMARY: Patients with epilepsy (PWE) do not appear to be more susceptible to COVID-19 infection than general population. Once infected with COVID-19, 16.4% of PWE had seizure exacerbation. The PWE who have experienced seizures within the past 12 months before infection tend to contract COVID-19 more often, and are more likely to experience seizure exacerbations following COVID-19 infection.

18.
Nat Commun ; 15(1): 3987, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734698

ABSTRACT

Despite advances in active drug targeting for blood-brain barrier penetration, two key challenges persist: first, attachment of a targeting ligand to the drug or drug carrier does not enhance its brain biodistribution; and second, many brain diseases are intricately linked to microcirculation disorders that significantly impede drug accumulation within brain lesions even after they cross the barrier. Inspired by the neuroprotective properties of vinpocetine, which regulates cerebral blood flow, we propose a molecular library design centered on this class of cyclic tertiary amine compounds and develop a self-enhanced brain-targeted nucleic acid delivery system. Our findings reveal that: (i) vinpocetine-derived ionizable-lipidoid nanoparticles efficiently breach the blood-brain barrier; (ii) they have high gene-loading capacity, facilitating endosomal escape and intracellular transport; (iii) their administration is safe with minimal immunogenicity even with prolonged use; and (iv) they have potent pharmacologic brain-protective activity and may synergize with treatments for brain disorders as demonstrated in male APP/PS1 mice.


Subject(s)
Blood-Brain Barrier , Brain , Cerebrovascular Circulation , Nanoparticles , Vinca Alkaloids , Animals , Vinca Alkaloids/pharmacology , Vinca Alkaloids/pharmacokinetics , Vinca Alkaloids/administration & dosage , Vinca Alkaloids/chemistry , Nanoparticles/chemistry , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Mice , Cerebrovascular Circulation/drug effects , Male , Brain/metabolism , Brain/drug effects , Brain/blood supply , Humans , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/pharmacology , Mice, Inbred C57BL , Tissue Distribution , Drug Delivery Systems , Mice, Transgenic
19.
Anim Cells Syst (Seoul) ; 28(1): 237-250, 2024.
Article in English | MEDLINE | ID: mdl-38741950

ABSTRACT

The role of ferroptosis-associated gene SLC7A11 in esophageal cancer progression is largely unknown, therefore, the effects of blocking SLC7A11 on esophageal squamous cell carcinoma (ESCC) cells are evaluated. Results showed that SLC7A11 was overexpressed in ESCC tissues both in mRNA and protein levels. Blocking SLC7A11 using Erastin suppressed the proliferation and colony formation of ESCC cells, decreased cellular ATP levels, and improved ROS production. Sixty-three SLC7A11-binding proteins were identified using the IP-MS method, and these proteins were enriched in four signaling pathways, including spliceosome, ribosome, huntington disease, and diabetic cardiomyopathy. The deubiquitinase inhibitors PR-619, GRL0617, and P 22077 could reduce at least 40% protein expression level of SLC7A11 in ESCC cells, and PR-619 and GRL0617 exhibited suppressive effects on the cell viability and colony formation ability of KYSE30 cells, respectively. Erastin downregulated GPX4 and DHODH and also reduced the levels of ß-catenin, p-STAT3, and IL-6 in ESCC cells. In conclusion, SLC7A11 was overexpressed in ESCC, and blocking SLC7A11 using Erastin mitigated malignant phenotypes of ESCC cells and downregulated key ferroptosis-associated molecules GPX4 and DHODH. The therapeutic potential of targeting SLC7A11 should be further evaluated in the future.

20.
Cancer Res ; 84(10): 1546-1547, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38745496

ABSTRACT

Antibody-based immune checkpoint blockade therapy has revolutionized the field of cancer immunotherapy, yet its efficacy remains limited in immunologically cold tumors. Combining checkpoint inhibitors with costimulatory agonists improves tumoricidal activity of T cells but also can lead to off-target hepatotoxicity. Although bispecific antibodies confer tumor selectivity to alleviate undesirable adverse effects, toxicity concerns persist with increased dosing. In this issue of Cancer Research, Yuwen and colleagues introduce ATG-101, a tetravalent PD-L1×4-1BB bispecific antibody with high programmed death ligand 1 (PD-L1) affinity and low 4-1BB affinity, aiming to mitigate hepatotoxicity. ATG-101 demonstrates PD-L1-dependent 4-1BB activation, leading to selective T-cell activation within the tumor microenvironment. ATG-101 exhibits potent antitumor activity, even in large, immunologically cold, and monotherapy-resistant tumor models. Single-cell RNA sequencing reveals significant shifts of immune cell populations in the tumor microenvironment from protumor to antitumor phenotypes following ATG-101 treatment. In cynomolgus monkeys, no serious cytokine storm and hepatotoxicity are observed after ATG-101 treatment, indicating a broad therapeutic window for ATG-101 in cancer treatment. This study highlights the potential of tetravalent bispecific antibodies in cancer immunotherapy, with implications for various antibody-based treatment modalities across different fields. See related article by Yuwen et al., p. 1680.


Subject(s)
Antibodies, Bispecific , B7-H1 Antigen , Tumor Microenvironment , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Humans , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/therapy , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Macaca fascicularis
SELECTION OF CITATIONS
SEARCH DETAIL
...