Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 627(8002): 157-164, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38418877

ABSTRACT

The accumulation of metabolic waste is a leading cause of numerous neurological disorders, yet we still have only limited knowledge of how the brain performs self-cleansing. Here we demonstrate that neural networks synchronize individual action potentials to create large-amplitude, rhythmic and self-perpetuating ionic waves in the interstitial fluid of the brain. These waves are a plausible mechanism to explain the correlated potentiation of the glymphatic flow1,2 through the brain parenchyma. Chemogenetic flattening of these high-energy ionic waves largely impeded cerebrospinal fluid infiltration into and clearance of molecules from the brain parenchyma. Notably, synthesized waves generated through transcranial optogenetic stimulation substantially potentiated cerebrospinal fluid-to-interstitial fluid perfusion. Our study demonstrates that neurons serve as master organizers for brain clearance. This fundamental principle introduces a new theoretical framework for the functioning of macroscopic brain waves.


Subject(s)
Brain , Cerebrospinal Fluid , Extracellular Fluid , Neurons , Action Potentials , Brain/cytology , Brain/metabolism , Brain Waves/physiology , Cerebrospinal Fluid/metabolism , Extracellular Fluid/metabolism , Glymphatic System/metabolism , Kinetics , Nerve Net/physiology , Neurons/metabolism , Optogenetics , Parenchymal Tissue/metabolism , Ions/metabolism
2.
Neuron ; 102(5): 1053-1065.e4, 2019 06 05.
Article in English | MEDLINE | ID: mdl-31006556

ABSTRACT

How general anesthesia (GA) induces loss of consciousness remains unclear, and whether diverse anesthetic drugs and sleep share a common neural pathway is unknown. Previous studies have revealed that many GA drugs inhibit neural activity through targeting GABA receptors. Here, using Fos staining, ex vivo brain slice recording, and in vivo multi-channel electrophysiology, we discovered a core ensemble of hypothalamic neurons in and near the supraoptic nucleus, consisting primarily of neuroendocrine cells, which are persistently and commonly activated by multiple classes of GA drugs. Remarkably, chemogenetic or brief optogenetic activations of these anesthesia-activated neurons (AANs) strongly promote slow-wave sleep and potentiates GA, whereas conditional ablation or inhibition of AANs led to diminished slow-wave oscillation, significant loss of sleep, and shortened durations of GA. These findings identify a common neural substrate underlying diverse GA drugs and natural sleep and reveal a crucial role of the neuroendocrine system in regulating global brain states. VIDEO ABSTRACT.


Subject(s)
Anesthetics, General/pharmacology , Hypnotics and Sedatives/pharmacology , Neuroendocrine Cells/drug effects , Sleep, Slow-Wave/drug effects , Supraoptic Nucleus/drug effects , Anesthesia, General , Animals , Dexmedetomidine/pharmacology , Electroencephalography , Electromyography , Electrophysiological Phenomena , Hypothalamus/cytology , Hypothalamus/drug effects , Hypothalamus/metabolism , Isoflurane/pharmacology , Ketamine/pharmacology , Mice , Neuroendocrine Cells/metabolism , Neurons/drug effects , Neurons/metabolism , Optogenetics , Patch-Clamp Techniques , Propofol/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Sleep/drug effects , Sleep/physiology , Sleep, Slow-Wave/physiology , Supraoptic Nucleus/cytology , Supraoptic Nucleus/metabolism
3.
Mol Autism ; 5: 32, 2014.
Article in English | MEDLINE | ID: mdl-25071926

ABSTRACT

BACKGROUND: As elegant structures designed for neural communication, synapses are the building bricks of our mental functions. Recently, many studies have pointed out that synaptic protein-associated mutations may lead to dysfunctions of social cognition. Dlgap2, which encodes one of the main components of scaffold proteins in postsynaptic density (PSD), has been addressed as a candidate gene in autism spectrum disorders. To elucidate the disturbance of synaptic balance arising from Dlgap2 loss-of-function in vivo, we thus generated Dlgap2 (-/-) mice to investigate their phenotypes of synaptic function and social behaviors. METHODS: The creation of Dlgap2 (-/-) mice was facilitated by the recombineering-based method, Cre-loxP system and serial backcross. Reversal learning in a water T-maze was used to determine repetitive behaviors. The three-chamber approach task, resident-intruder test and tube task were performed to characterize the social behaviors of mutant mice. Cortical synaptosomal fraction, Golgi-Cox staining, whole-cell patch electrophysiology and transmission electron microscopy were all applied to investigate the function and structure of synapses in the orbitofrontal cortex (OFC) of Dlgap2 (-/-) mice. RESULTS: Dlgap2 (-/-) mice displayed exacerbated aggressive behaviors in the resident-intruder task, and elevated social dominance in the tube test. In addition, Dlgap2 (-/-) mice exhibited a clear reduction of receptors and scaffold proteins in cortical synapses. Dlgap2 (-/-) mice also demonstrated lower spine density, decreased peak amplitude of miniature excitatory postsynaptic current and ultra-structural deficits of PSD in the OFC. CONCLUSIONS: Our findings clearly demonstrate that Dlgap2 plays a vital role in social behaviors and proper synaptic functions of the OFC. Moreover, these results may provide valuable insights into the neuropathology of autism.

SELECTION OF CITATIONS
SEARCH DETAIL
...