Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Environ Manage ; 333: 117440, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36758407

ABSTRACT

One under-studied microelement, manganese (Mn), due to its potential to considerably interact, and limit labile, and moderately-labile soil phosphorus (P) pools, was studied in Nanchang (NC), and Qiyang (QY) under paddy conditions. The Hedley's P sequential fractionation procedure was utilized to extract, and quantify various P fractions at both surface (0-20 cm) and subsurface (20-40 cm) layers. Unfertilized control (CK), nitrogen, phosphorus, and potassium (NPK), and NPK amended with animal manure (NPKM) were used as treatments. From both sites, the manure amended fertilizer (NPKM) compared to chemical NPK formed higher proportions of macro-aggregates (>2 and 2-0.25 mm) in both layers. Total P (TP) values of 842.1 (>2 mm), and 744.4 mg kg-1 (2-0.25 mm) from NC, and QY, respectively were accumulated by NPKM compared to NPK, and CK. Total P values of 806.4, and 350.4 mg kg-1 in the >2 mm aggregate size, respectively for NC, and QY were observed in the subsurface layer. Inorganic moderately labile P (NaOH-Pi) was the dominant fraction under all fertilizer treatments. Concentrations of 232.3 (<0.053 mm), and 202.1 mg kg-1 (0.25-0.053 mm) of NaOH-Pi were accumulated by NPKM, respectively for NC, and QY in the surface layer. In the subsurface layer, concentrations of NaOH-Pi (217.5 mg kg-1; <0.053 mm) from NC, and residual-P (57.3 mg kg-1; >2 mm) from QY were accumulated by NPKM. Similarly, NPKM in contrast to NPK contributed higher Mehlich-3 manganese (M3-Mn) oxide in all aggregate sizes from both sites. Generally, macro-aggregates contributed higher TP, fractions of P, and M3-Mn oxide than micro-aggregates. There was a positive relationship between P pools and M3-Mn oxide at both sites. Additions of animal manure were associated with increased P fractions, and Mn oxides in the paddy soil aggregates, which raises environmental concern.


Subject(s)
Agriculture , Soil , Animals , Agriculture/methods , Phosphorus/analysis , Fertilizers/analysis , Manure , Manganese , Sodium Hydroxide , Oxides , Nitrogen/analysis , Fertilization , China
2.
PLoS One ; 16(1): e0246428, 2021.
Article in English | MEDLINE | ID: mdl-33513183

ABSTRACT

Soil phosphorus (P) adsorption and desorption occur in an important endogenous cycle linked with soil fertility problems and relevant to the environmental risk assessment of P. In our study, the effect of long-term inorganic and organic fertilization on P adsorption and desorption characteristics in relation to changes in soil properties was evaluated by selecting three long-term experimental sites in southern China. The selected treatments at each site were CK (unfertilized), NPK (synthetic nitrogen, phosphorus and potassium) and NPKM (synthetic NPK plus manure). The adsorption and desorption characteristics of P were evaluated using Langmuir and Freundlich isotherms. The results showed that long-term application of NPK plus manure significantly increased soil organic carbon (SOC), total P and available P at all three sites compared with the NPK and CK treatments. All three treatments fit these equations well. The maximum adsorption capacity (Qm) of P increased with NPKM treatment, and the binding energy of P (K) and the maximum buffering capacity (MBC) showed increasing trends. NPKM showed the highest Qm (2346.13 mg kg-1) at the Jinxian site, followed by Nanchang (221.16 mg kg-1) and Ningxiang (2219.36 mg kg-1). Compared to CK and NPK, the NPKM treatment showed a higher MBC as 66.64, 46.93 and 44.39 L kg-1 at all three sites. The maximum desorption capacity (Dm) of P in soil was highest with the NPKM treatment (157.58, 166.76, 143.13 mg kg-1), showing a better ability to release P in soil. The correlation matrix showed a significant positive correlation of SOC, total and available P with Qm, Dm and MBC. In conclusion, it is suggested that manure addition is crucial to improve P utilization in red paddy soils within the recommended range to avoid the risk of environmental pollution.


Subject(s)
Agriculture , Fertilizers , Nitrogen/analysis , Phosphorus/analysis , Soil/chemistry , Adsorption , China
3.
Sci Rep ; 10(1): 19828, 2020 11 13.
Article in English | MEDLINE | ID: mdl-33188239

ABSTRACT

Low phosphorus use efficiency (PUE) is one of the main problems of acidic soil that limit the crop growth. Therefore, in the present study, we investigated the response of crop yield and PUE to the long-term application of fertilizers and quicklime (CaO) in the acidic soil under wheat-maize rotation system. Treatments included, CK (no fertilization), NP (inorganic nitrogen and P fertilization), NPK (inorganic N, P and potassium fertilization), NPKS (NPK + straw return), NPCa (NP + lime), NPKCa (NPK + lime) and NPKSCa (NPKS + lime). Results showed that, fertilizer without lime treatments, significantly (p ≤ 0.05) decreased soil pH and crop yield, compared to the fertilizer with lime treatments during the period of 2012-2018. Average among years, compared to the CK treatment, wheat grain yield increased by 138%, 213%, 198%, 547%, 688% and 626%, respectively and maize yield increased by 687%, 1887%, 1651%, 2605%, 5047% and 5077%, respectively, under the NP, NPK, NPKS, NPCa, NPKCa and NPKSCa treatments. Lime application significantly increased soil exchangeable base cations (Ca2+ and Mg2+) and decreased Al3+ cation. Compared to the NP treatment, phosphorus use efficiency (PUE) increased by 220%, 212%, 409%, 807% and 795%, respectively, under the NPK, NPKS, NPCa, NPKCa and NPKSCa treatments. Soil pH showed significant negative relationship with exchangeable Al3+ and soil total N. While, soil pH showed significant (p ≤ 0.05) positive relationship with exchangeable Ca2+, PUE and annual crop yield. PUE was highly negatively correlated with soil exchangeable Al3+. In addition, soil exchangeable Ca2+, pH, exchangeable Al3+ and available N were the most influencing factors of crop yield. Therefore, we concluded that lime application is an effective strategy to mitigate soil acidification and to increase PUE through increasing exchangeable base cations and reducing the acidic cations for high crop yield in acidic soil.

SELECTION OF CITATIONS
SEARCH DETAIL
...