Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 671: 46-55, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38788423

ABSTRACT

Efficient production of green hydrogen energy is crucial in addressing the energy crisis and environmental concerns. The oxygen evolution reaction (OER) poses a challenge in conventional overall water electrolysis due to its slow thermodynamically process. Urea oxidation reaction (UOR) offers an alternative anodic oxidation method that is highly efficient and cost-effective, with favorable thermodynamics and sustainability. Recently, there has been limited research on bifunctional catalysts that exhibit excellent activity for both OER and UOR reactions. In this study, we developed a selenium and iron co-doped nickel sulfide (SeFe-Ni3S2) catalyst that demonstrated excellent Tafel slopes of 53.9 mV dec-1 and 16.4 mV dec-1 for OER and UOR, respectively. Density Functional Theory (DFT) calculations revealed that the introduction of metal (iron) and nonmetallic elements (selenium) was found to coordinate the d-band center, resulting in improved adsorption/desorption energies of the catalysts and reduced the overpotentials and limiting potentials for OER and UOR, respectively. This activity enhancement can be attributed to the altered electronic coordination structure after the introduction of selenium (Se) and iron (Fe), leading to an increase in the intrinsic activity of the catalyst. This work offers a new strategy for bifunctional catalysts for OER and UOR, presenting new possibilities for the future development of hydrogen production and novel energy conversion technologies. It contributes towards the urgent search for technologies that efficiently produce green hydrogen energy, providing potential solutions to mitigate the energy crisis and protect the environment.

2.
Angew Chem Int Ed Engl ; 63(24): e202403203, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38590293

ABSTRACT

Nanozymes have demonstrated significant potential in combating malignant tumor proliferation through catalytic therapy. However, the therapeutic effect is often limited by insufficient catalytic performance. In this study, we propose the utilization of strain engineering in metallenes to fully expose the active regions due to their ultrathin nature. Here, we present the first report on a novel tensile strain-mediated local amorphous RhRu (la-RhRu) bimetallene with exceptional intrinsic photothermal effect and photo-enhanced multiple enzyme-like activities. Through geometric phase analysis, electron diffraction profile, and X-ray diffraction, it is revealed that crystalline-amorphous heterophase boundaries can generate approximately 2 % tensile strain in the bimetallene. The ultrathin structure and in-plane strain of the bimetallene induce an amplified strain effect. Both experimental and theoretical evidence support the notion that tensile strain promotes multiple enzyme-like activities. Functioning as a tumor microenvironment (TME)-responsive nanozyme, la-RhRu exhibits remarkable therapeutic efficacy both in vitro and in vivo. This work highlights the tremendous potential of atomic-scale tensile strain engineering strategy in enhancing tumor catalytic therapy.


Subject(s)
Photothermal Therapy , Humans , Catalysis , Animals , Mice , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Neoplasms/therapy , Tensile Strength , Cell Line, Tumor , Tumor Microenvironment/drug effects
3.
Adv Mater ; 36(9): e2309199, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38011897

ABSTRACT

Although S-scheme artificial photosynthesis shows promise for photocatalytic hydrogen production, traditional methods often overly concentrate on a single reduction site. This limitation results in inadequate redox capability and inefficient charge separation, which hampers the efficiency of the photocatalytic hydrogen evolution reaction. To overcome this limitation, a double S-scheme system is proposed that leverages dual reduction sites, thereby preserving energetic photo-electrons and holes to enhance apparent quantum efficiency. The design features a double S-scheme junction consisting of CdS nanospheres decorated with anatase TiO2 nanoparticles coupled with graphitic C3 N4 . The as-prepared catalyst exhibits a hydrogen evolution rate of 26.84 mmol g-1  h-1 and an apparent quantum efficiency of 40.2% at 365 nm. This enhanced photocatalytic hydrogen evolution is ascribed to the efficient charge separation and transport induced by the double S-scheme. Both theoretical calculations and comprehensive spectroscopy tests (both in situ and ex situ) affirm the efficient charge transport across the catalyst interface. Moreover, substituting the reduction-type catalyst CdS with other similar sulfides like ZnIn2 S4 , ZnS, MoS2 and In2 S3 further confirms the feasibility of the proposed double S-scheme configuration. The findings provide a pathway to designing more effective double S-scheme artificial photosynthetic systems, opening up fresh perspectives in enhancing photocatalytic hydrogen evolution performance.

4.
Small ; 20(19): e2309249, 2024 May.
Article in English | MEDLINE | ID: mdl-38152975

ABSTRACT

Achieving a balance between H-atom adsorption and binding with H2 desorption is crucial for catalyzing hydrogen evolution reaction (HER). In this study, the feasibility of designing and implementing built-in opposite electric fields (OEF) is demonstrated to enable optimal H atom adsorption and H2 desorption using the Ni3(BO3)2/Ni5P4 heterostructure as an example. Through density functional theory calculations of planar averaged potentials, it shows that opposite combinations of inward and outward electric fields can be achieved at the interface of Ni3(BO3)2/Ni5P4, leading to the optimization of the H adsorption free energy (ΔGH*) near electric neutrality (0.05 eV). Based on this OEF concept, the study experimentally validated the Ni3(BO3)2/Ni5P4 system electrochemically forming Ni3(BO3)2 through cyclic voltammetry scanning of B-doped Ni5P4. The surface of Ni3(BO3)2 undergoes reconstruction, as characterized by Grazing Incidence Wide-Angle X-ray Scattering (GIWAXS) and in situ Raman spectroscopy. The resulting catalyst exhibits excellent HER activity in alkaline media, with a low overpotential of 33 mV at 10 mA cm-2 and stability maintained for over 360 h. Therefore, the design strategy of build-in opposite electric field enables the development of high-performance HER catalysts and presents a promising approach for electrocatalyst advancement.

5.
Angew Chem Int Ed Engl ; 63(6): e202318246, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38102742

ABSTRACT

Addressing the limitations arising from the consistent catalytic behavior observed for various intermediates during the electrochemical carbon dioxide reduction reaction (CO2 RR) poses a significant challenge in the optimization of catalytic activity. In this study, we aimed to address this challenge by constructing an asymmetric coordination Fe single atom catalyst (SCA) with a dynamically evolved structure. Our catalyst, consisting of a Fe atom coordinated with one S atom and three N atoms (Fe-S1 N3 ), exhibited exceptional selectivity (CO Faradaic efficiency of 99.02 %) and demonstrated a high intrinsic activity (TOF of 7804.34 h-1 ), and remarkable stability. Using operando XAFS spectra and Density Functional Theory (DFT) calculations, we elucidated the self-relaxation of geometric distortion and dynamic evolution of bond lengths within the catalyst. These structure changes enabled independent regulation of the *COOH and *CO intermediate adsorption energies, effectively breaking the linear scale relationship and enhancing the intrinsic activity of CO2 RR. This study provides valuable insights into the dynamic evolution of SACs and paves the way for targeted catalyst designs aimed to disrupt the linear scaling relationships.

6.
Adv Sci (Weinh) ; 10(4): e2205605, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36382551

ABSTRACT

Efficient electrocatalytic reactions require a coordinated active center that may provide a properly reaction intermediates adsorption in water splitting. Herein, a Ni active center coordination reconstruction method achieved by multidimensional modulation of phase transition, iodine coordination, and vacancy defects is designed and implemented. This coordination reconstruction results in the successful synthesis of Ni5 P4- x Ix /Ni2 P nanocorals that show outstanding bifunctional catalytic activity due to deep optimization of the adsorption energy. The overpotentials of hydrogen evolution reaction and oxygen evolution reaction at 10 mA cm-2 are 46 and 163 mV, respectively. Only 1.46 V is required to drive alkaline overall water splitting. Novel coordination environment is investigated by electron paramagnetic resonance spectroscopy and extended X-ray absorption fine structure spectroscopy. A 4D integrated material design strategy of "thermodynamic stability-electronic properties-charge transfer-adsorption energy" for water-splitting catalysts is proposed. This coordination reconstruction concept and material design method provide new perspectives for the research of novel catalysts.

7.
Phys Chem Chem Phys ; 22(29): 16691-16700, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32658242

ABSTRACT

Searching for highly-efficient and low-cost electrocatalysts for the hydrazine oxidation reaction (HzOR) is a key issue in the development of direct hydrazine fuel cells for hydrogen production, which is a promising energy-efficient conversion technology to replace the sluggish oxygen evolution reaction in water splitting. Herein, the potential of a series of single transition metal atoms anchored on nitrogenated holey graphene (TM@C2N, TM = Ti, Mn, Fe, Co, Ni, Cu, Mo, Rh, Ru, Pd, Pt, Au, Ag, and W) as catalysts for the HzOR was systematically explored by means of comprehensive density functional theory (DFT) computations. Our results revealed that these TM atoms anchored on a C2N monolayer exhibit high stability due to their strong interactions with the N atoms on the C2N monolayer. Furthermore, on the basis of the computed free energy profiles, Ru@C2N, Mo@C2N, Ti@C2N, Co@C2N, and Fe@C2N were shown to display high HzOR catalytic activity due to their lower (or comparable) limiting potential compared to the well-established Fe-doped CoS2 nanosheet. In particular, Ru@C2N is identified as the best catalyst with the lowest limiting potential of -0.24 V due to its optimum difference between the adsorption strength of N2H3* and N2H2* species. More interestingly, we found that single Mo and Ti atoms also exhibit excellent catalytic performance for the hydrogen evolution reaction, suggesting their bifunctional activity towards hydrazine splitting for H2 production. Our findings provide a new avenue to develop an efficient single-atom electrocatalyst for experimental validation to convert hydrazine into hydrogen.

8.
Gene ; 582(1): 85-93, 2016 May 10.
Article in English | MEDLINE | ID: mdl-26850132

ABSTRACT

Insecticide deltamethrin resistance has presented a difficult obstacle for pest control and the resistance development is complex and associated with many genes. To better understand the possible molecular mechanisms involved in DM stress, in this study, cDNA microarray analysis was employed. 448 differentially expressed genes with at least a 2-fold expression difference were identified in Drosophila cells after DM exposure. Moreover, some genes were confirmed with qPCR, which yielded results consistent with the microarray analysis. Three members of the ubiquitin-proteasome system were significantly elevated in DM-stressed cells, suggesting that the ubiquitin-proteasome pathway may play an important role in DM detoxification. The proteasome beta2 subunit (Prosbeta2) is a member of 20S proteasome subunit family, which forms the proteolytic core of 26S proteasome. Whether Prosbeta2 participates in DM detoxification requires further study. RNAi and heterologous expression were conducted to investigate the contribution of Prosbeta2 in DM detoxification. The results revealed Prosbeta2 knockdown significantly reduce the level of DM detoxification in RNAi-treated cells after 48 h. Overexpression of Prosbeta2 increased cellular viability. These detoxification results represent the first evidence that Prosbeta2 plays a role in the detoxification of DM, which may provide new idea and target for studying the molecular mechanisms of insect resistance.


Subject(s)
Drosophila Proteins/biosynthesis , Endopeptidases/biosynthesis , Insecticide Resistance/drug effects , Proteasome Endopeptidase Complex/genetics , Animals , Drosophila/drug effects , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Endopeptidases/genetics , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Insecticide Resistance/genetics , Nitriles/toxicity , Oligonucleotide Array Sequence Analysis/methods , Proteasome Endopeptidase Complex/chemistry , Pyrethrins/toxicity
9.
Arch Insect Biochem Physiol ; 90(2): 70-88, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25983007

ABSTRACT

Ubiquitin, a small protein consisting of 76 amino acids, acts in protein degradation, DNA repair, signal transduction, transcriptional regulation, and receptor control through endocytosis. Using proteomics, we compared the differentially ubiquitinated proteins between a deltamethrin-resistant (DR) strain and a deltamethrin-sensitive (DS) strain in third-instar larvae of the diamondback moth. We used polyubiquitin affinity beads to enrich ubiquitinated proteins and then performed one-dimensional SDS-PAGE separation and mass spectrometric identification. In the DR strain, We found 17 proteins that were upregulated (relative to the DS strain), including carbonic anhydrase family members, ADP ribosylation factor 102F CG11027-PA, protein kinase 61C, phospholipase A2 , dihydrolipoamide dehydrogenase, tyrosine hydroxylase, and heat shock proteins, and five proteins that were downregulated in the DS strain, including carboxylesterase and DNA cytosine-5 methyltransferase. These results were also verified by qPCR. The differentially ubiquitinated proteins/enzymes were mainly responsible for protein binding, catalytic activity, and molecular transducer activity. These results improve our understanding of the relationship between protein ubiquitination and the deltamethrin stress response.


Subject(s)
Insect Proteins/metabolism , Insecticide Resistance , Moths/drug effects , Moths/metabolism , Nitriles/pharmacology , Pyrethrins/pharmacology , Amino Acid Sequence , Animals , Insect Proteins/analysis , Insect Proteins/genetics , Larva/drug effects , Larva/metabolism , Molecular Sequence Data , Proteomics/methods , Ubiquitinated Proteins
10.
Gene ; 530(1): 51-6, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-23973721

ABSTRACT

Differential expression of ubiquitin was previously reported between Plutella xylostella strains that are resistant or susceptible to the pesticide deltamethrin (DM). This finding hinted at the potential involvement of ubiquitin in deltamethrin resistance, a theory that demanded further testing. Real-time PCR analyses revealed that one of the ubiquitin genes, UBL40, was overexpressed in the deltamethrin-resistant strain during the fourth instar. To investigate the functional relationship between this gene and deltamethrin resistance, RNA interference (RNAi) and cell transfection were utilised. UBL40 knockdown was observed to significantly reduce the level of resistance in RNAi-treated larvae after 48 h. Conversely, overexpression of UBL40 in Drosophila Kc cells conferred a degree of protection against deltamethrin. These results represent the first evidence that UBL40 plays a role in the regulation of deltamethrin resistance in P. xylostella.


Subject(s)
Insect Proteins/genetics , Insecticide Resistance/genetics , Moths/genetics , Nitriles/toxicity , Pyrethrins/toxicity , Ubiquitin/genetics , Animals , Drosophila/genetics , RNA Interference
SELECTION OF CITATIONS
SEARCH DETAIL
...