Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(34): 41007-41018, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37585804

ABSTRACT

Although solar steam generation is promising in generating clean water by desalinating seawater, it is powerless to totally degrade organic contaminants in the seawater. Herein, solar steam generation and catalytic degradation are integrated to generate clean water by simultaneous solar-driven desalination and catalytic degradation of wastewater containing both salt ions and organic contaminants. Stepwise decoration of three-dimensional nickel foam with polypyrrole, reduced graphene oxide (RGO), and cobalt phosphate is realized to obtain polypyrrole/RGO/cobalt phosphate/nickel foam (PGCN) hybrids for solar-driven desalination and catalytic degradation of wastewater containing antibiotics and salt ions. The oxygen-containing groups of the RGO integrated with the porous nickel foam make the porous PGCN hybrid hydrophilic and ensure the upward transport of water to the evaporation surface, and the oxygen vacancies of the cobalt phosphate allow the PGCN to generate abundant highly active singlet oxygen that could still exhibit excellent catalytic degradation performances in the high salinity and highly alkaline environment of seawater. In addition to the high solar light absorbance and satisfactory solar-thermal conversion efficiency of polypyrrole and RGO, the thermally conductive nickel foam skeleton can effectively transfer the heat generated by the solar-thermal energy conversion to the adjacent cobalt phosphate catalyst and nearby wastewater, achieving a solar-thermal-promoted catalytic degradation of organic contaminants. Therefore, a high pure water evaporation rate of 2.08 kg m-2 h-1 under 1 sun irradiation and 100% catalytic degradation of Norfloxacin and dyes are achieved. The PGCN hybrid is highly efficient in purifying seawater containing 10 ppm Norfloxacin and simultaneously achieves a high purification efficiency of 100 kg m-2 h-1.

2.
ACS Appl Mater Interfaces ; 15(24): 29457-29467, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37285282

ABSTRACT

Although the emerging interfacial solar steam generation technology is sustainable and eco-friendly for generating clean water by desalinating seawater and purifying wastewaters, salt deposition on the evaporation surface during solar-driven evaporation severely degrades the purification performances and adversely affect the long-term performance stability of solar steam generation devices. Herein, to construct solar steam generators for efficient solar steam generation and seawater desalination, three-dimensional (3D) natural loofah sponges with both macropores of the sponge and microchannels of the loofah fibers are hydrothermally decorated with molybdenum disulfide (MoS2) sheets and carbon particles. Benefiting from fast upward transport of water, rapid steam extraction, and effective salt-resistant capacity, the 3D hydrothermally decorated loofah sponge with MoS2 sheets and carbon particles (HLMC) with an exposed height of 4 cm can not only obtain heat by its top surface under the downward solar light irradiation based on the solar-thermal energy conversion but also gain environmental energy by its porous sidewall surface, achieving a competitive water evaporation rate of 3.45 kg m-2 h-1 under 1 sun irradiation. Additionally, the 3D HLMC evaporator exhibits long-term desalination stability during the solar-driven desalination of an aqueous salt solution with 3.5 wt % NaCl for 120 h without apparent salt deposition because of its dual type of pores and uneven structure distribution.

3.
J Colloid Interface Sci ; 637: 477-488, 2023 May.
Article in English | MEDLINE | ID: mdl-36716671

ABSTRACT

Although most solar steam generation devices are effective in desalinating seawater and purifying wastewaters with heavy metal ions, they are ineffective in degrading organic pollutants from wastewaters. Herein, we design novel solar-driven water purification devices by decoration of three-dimensional pinecones with MoS2 nanoflowers via a one-step hydrothermal synthesis for generating clean water. The vertically arrayed channels in the central rachis and the unique helically arranged scales of the hydrothermal pinecone can not only transfer bulk water upward to the evaporation surface, but also absorb more solar light from different incident angles for solar-thermal evaporation and photodegradation of wastewaters under omnidirectional irradiations. The decorated MoS2 nanoflowers can not only enhance the solar-thermal energy conversion efficiency, but also decompose organic pollutants in the bulk water by their photocatalytic degradation effects. The resultant hydrothermal pinecone with in situ decorated MoS2 (HPM) evaporator exhibits a high evaporation rate of 1.85 kg m-2 h-1 under 1-sun irradiation with a high energy efficiency of 96 %. During the solar-driven water purification processes, the powdery HPM can also photodegrade organic pollutants of methylene blue and rhodamine B with high removal efficiencies of 96 % and 95 %, respectively. For practical demonstration, by floating in the methylene blue solution under 1-sun irradiation, the bulky HPM can generate clean water by simultaneous solar-thermal evaporation and photocatalytic degradation. The integration of solar steam generation and photocatalytic degradation mechanisms makes the HPM evaporator highly promising for practical high-yield purification of wastewaters.

SELECTION OF CITATIONS
SEARCH DETAIL
...