Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 97(11): 7043-53, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25173463

ABSTRACT

Although the effect of nutrition on enteric methane (CH4) emissions from confined dairy cattle has been extensively examined, less information is available on factors influencing CH4 emissions from grazing dairy cattle. In the present experiment, 40 Holstein-Friesian dairy cows (12 primiparous and 28 multiparous) were used to examine the effect of concentrate feed level (2.0, 4.0, 6.0, and 8.0 kg/cow per day; fresh basis) on enteric CH4 emissions from cows grazing perennial ryegrass-based swards (10 cows per treatment). Methane emissions were measured on 4 occasions during the grazing period (one 4-d measurement period and three 5-d measurement periods) using the sulfur hexafluoride technique. Milk yield, liveweight, and milk composition for each cow was recorded daily during each CH4 measurement period, whereas daily herbage dry matter intake (DMI) was estimated for each cow from performance data, using the back-calculation approach. Total DMI, milk yield, and energy-corrected milk (ECM) yield increased with increasing concentrate feed level. Within each of the 4 measurement periods, daily CH4 production (g/d) was unaffected by concentrate level, whereas CH4/DMI decreased with increasing concentrate feed level in period 4, and CH4/ECM yield decreased with increasing concentrate feed level in periods 2 and 4. When emissions data were combined across all 4 measurement periods, concentrate feed level (2.0, 4.0, 6.0, and 8.0 kg/d; fresh basis) had no effect on daily CH4 emissions (287, 273, 272, and 277 g/d, respectively), whereas CH4/DMI (20.0, 19.3, 17.7, and 18.1g/kg, respectively) and CH4-E/gross energy intake (0.059, 0.057, 0.053, and 0.054, respectively) decreased with increasing concentrate feed levels. A range of prediction equations for CH4 emissions were developed using liveweight, DMI, ECM yield, and energy intake, with the strongest relationship found between ECM yield and CH4/ECM yield (coefficient of determination = 0.50). These results demonstrate that offering concentrates to grazing dairy cows increased milk production per cow and decreased CH4 emissions per unit of milk produced.


Subject(s)
Animal Nutritional Physiological Phenomena , Cattle/physiology , Dairying , Energy Intake , Methane/metabolism , Animal Feed/analysis , Animals , Dose-Response Relationship, Drug , Female , Lactation/physiology , Milk/chemistry , Milk/metabolism , Nutritional Status , Random Allocation
2.
J Anim Sci ; 92(7): 3042-52, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24879759

ABSTRACT

The objectives of the present study were to evaluate the effects of sex (steers vs. heifers) of young Holstein cattle on N and OM excretion in feces and urine and to use these data to develop prediction models for N and OM excretion. Data used were derived from a study with 20 autumn-born Holstein cattle (10 steers and 10 heifers) with N and OM intake and output measured at age of 6, 12, 18, and 22 mo, respectively. The cattle were offered a typical diet used on U.K. commercial farms containing a single grass silage mixed with concentrates. In each period, the cattle were housed as a single group in cubicle accommodation for the first 20 d, individually in metabolism units for the next 3 d, and then in calorimeter chambers for the final 5 d with feed intake, feces, and urine excretion measured during the final 4 d. Within each period, sex had no effect (P > 0.05) on N or OM intake or excretion or N utilization efficiency, with exceptions of steers having a greater intake of N (P = 0.036) and OM (P = 0.018) at age of 18 mo and a lower ratio of fecal N:N intake (P = 0.023) at age of 6 mo. A range of regression relationships (P < 0.05) were developed for prediction of N (g/d) and OM (kg/d) excretion in feces and urine. The present data were also used to calculate accumulated N and OM intake (kg) and excretion for the 2 sexes. Sex had no effects (P > 0.05) on accumulated N or OM intake or N or OM excretion in feces and urine or retained N and OM during the first or second year of life. On average for the 2 sexes at first and second year of age, the accumulated N excretions in feces were 11.4 and 21.1 kg and in urine 11.6 and 30.6 kg, respectively, and the corresponding values for accumulated OM excretions were respectively 241.5, 565.7, 30.3 and 81.5 kg. A number of equations were developed to predict accumulated N and OM excretion in feces and urine (kg) using BW (kg; P < 0.001, r(2) = 0.95 to 0.97). The accurate prediction of N and OM excretion in feces and urine is essential for reducing N pollution to ground and surface water and calculating methane and nitrous oxide emissions from manure management of dairy and beef production systems. These data can add novel information to the scientific literature and can be used to improve national inventories of manure N output and greenhouse gas emissions and to develop appropriate mitigation strategies for young Holstein cattle.


Subject(s)
Cattle/metabolism , Diet/veterinary , Manure/analysis , Nitrogen/analysis , Silage , Animal Feed , Animals , Female , Male , Poaceae/metabolism
3.
J Anim Sci ; 91(1): 356-62, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23048155

ABSTRACT

Twenty 5-mo-old Holstein cattle (10 steers and 10 heifers) were selected from a dairy herd for a 28 d study of enteric methane emissions and energy utilization. The cattle were offered a completely mixed diet with grass silage and concentrates (0.45 and 0.55, DM basis, respectively). They were housed as a single group in cubicle accommodation for the first 20 d, transferred to metabolism units for 3 d, and subsequently housed in indirect open-circuit respiration calorimeter chambers for next 5 d with measurements of feed intake, feces and urine outputs, and gaseous exchange. There were no significant differences (P>0.05) between the 2 groups in terms of animal performance (feed intake, BW, or BW gain), energy metabolism (energy intake, energy outputs, or energy use efficiency), or methane emission rates (total methane emissions expressed on feed intake or energy intake basis). Therefore, the data from the 2 groups were pooled to develop a range of relationships between inputs and outputs. The regression of energy balance or heat production against ME intake (r2=0.85; P<0.001) indicated a NEm of 0.57 MJ/kg BW0.75, which is greater than reported for adult dairy cattle. The methane energy output was found to be 0.068 of GE intake when the intercept was omitted from the linear equation (r2=0.73; P<0.001), which is greater than the commonly accepted value (0.065) for adult cattle used for development of methane emission inventories for dairy and beef production systems. These data can add useful information, as there is little information available on measurements of maintenance energy requirement or methane emissions in young stock (6 mo old) of the current high-yielding dairy cattle. The use of these data can potentially improve the accuracy of prediction of energy requirement and methane emissions for dairy and beef production systems in these dietary conditions.


Subject(s)
Aging/physiology , Cattle/physiology , Energy Metabolism/physiology , Methane/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Dairying , Diet/veterinary , Female , Male , Methane/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...