Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 5: 8978, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25752245

ABSTRACT

Full counting statistics of electron transport is a powerful diagnostic tool for probing the nature of quantum transport beyond what is obtainable from the average current or conductance measurement alone. In particular, the non-Markovian dynamics of quantum dot molecule plays an important role in the nonequilibrium electron tunneling processes. It is thus necessary to understand the non-Markovian full counting statistics in a quantum dot molecule. Here we study the non-Markovian full counting statistics in two typical quantum dot molecules, namely, serially coupled and side-coupled double quantum dots with high quantum coherence in a certain parameter regime. We demonstrate that the non-Markovian effect manifests itself through the quantum coherence of the quantum dot molecule system, and has a significant impact on the full counting statistics in the high quantum-coherent quantum dot molecule system, which depends on the coupling of the quantum dot molecule system with the source and drain electrodes. The results indicated that the influence of the non-Markovian effect on the full counting statistics of electron transport, which should be considered in a high quantum-coherent quantum dot molecule system, can provide a better understanding of electron transport through quantum dot molecules.

2.
Phys Rev Lett ; 111(17): 176601, 2013 Oct 25.
Article in English | MEDLINE | ID: mdl-24206509

ABSTRACT

We perform a quantitative, comparative study of the spin pumping, spin Seebeck, and spin Hall magnetoresistance effects, all detected via the inverse spin Hall effect in a series of over 20 yttrium iron garnet/Pt samples. Our experimental results fully support present, exclusively spin current-based, theoretical models using a single set of plausible parameters for spin mixing conductance, spin Hall angle, and spin diffusion length. Our findings establish the purely spintronic nature of the aforementioned effects and provide a quantitative description, in particular, of the spin Seebeck effect.

3.
Phys Rev Lett ; 110(21): 217602, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23745937

ABSTRACT

The spin current pumped by a precessing ferromagnet into an adjacent normal metal has a constant polarization component parallel to the precession axis and a rotating one normal to the magnetization. The former is now routinely detected as a dc voltage induced by the inverse spin Hall effect (ISHE). Here we compute ac ISHE voltages much larger than the dc signals for various material combinations and discuss optimal conditions to observe the effect. The backflow of spin is shown to be essential to distill parameters from measured ISHE voltages for both dc and ac configurations.

4.
J Phys Condens Matter ; 25(15): 155304, 2013 Apr 17.
Article in English | MEDLINE | ID: mdl-23528850

ABSTRACT

We study spin-resolved noise in Coulomb blockaded double quantum dots coupled to ferromagnetic electrodes. The modulation of the interdot coupling and spin polarization in the electrodes gives rise to an intriguing dynamical spin ↑-↑ (↓-↓) blockade mechanism: bunching of up (down) spins due to dynamical blockade of an up (down) spin. In contrast to the conventional dynamical spin ↑-↓ bunching (bunching of up spins associated with a dynamical blockade of a down spin), this new bunching behavior is found to be intimately associated with the spin mutual-correlation, i.e. the noise fluctuation between opposite spin currents. We further demonstrate that the dynamical spin ↑-↑ and ↑-↓ bunching of tunneling events may be coexistent in the regime of weak interdot coupling and low spin polarization.

5.
J Phys Condens Matter ; 23(14): 145301, 2011 Apr 13.
Article in English | MEDLINE | ID: mdl-21430309

ABSTRACT

We examine the full counting statistics of electron transport through double quantum dots coupled in series, with particular attention being paid to the unique features originating from level renormalization. It is clearly illustrated that the energy renormalization gives rise to a dynamic charge blockade mechanism, which eventually results in super-Poissonian noise. Coupling of the double dots to an external heat bath leads to dephasing and relaxation mechanisms, which are demonstrated to suppress the noise in a unique way.

6.
J Phys Condens Matter ; 21(38): 385801, 2009 Sep 23.
Article in English | MEDLINE | ID: mdl-21832377

ABSTRACT

Quantum measurement will inevitably cause backaction on the measured system, resulting in the well-known dephasing and relaxation. In this paper, in the context of solid-state qubit measurement by a mesoscopic detector, we show that an alternative backaction known as renormalization is important under some circumstances. This effect is largely overlooked in the theory of quantum measurement.

SELECTION OF CITATIONS
SEARCH DETAIL
...