Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(25): 256503, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38996236

ABSTRACT

The recently discovered superconductivity with critical temperature T_{c} up to 80 K in the double-layer Nickelate La_{3}Ni_{2}O_{7-δ} under pressure has drawn great attention. Here, we report the positive muon spin relaxation (µ^{+}SR) study of polycrystalline La_{3}Ni_{2}O_{6.92} under ambient pressure. Zero-field µ^{+}SR experiments reveal the existence of magnetic order in La_{3}Ni_{2}O_{6.92} with T_{N}=154 K. The weak transverse field µ^{+}SR measurements reveal the bulk nature of magnetism. In addition, a small quantity of oxygen deficiencies can greatly broaden the internal magnetic field distribution sensed by muons.

2.
Chem Commun (Camb) ; 59(21): 3114-3117, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36807431

ABSTRACT

Realizing photo-promoted saturated C-H functionalization is a significant challenge. [CuI3(H2O)6(TPT)2][H2BW12O40]·28H2O was assembled by combining electron reservoir [BW12O40]5- with photosensitizer TPT. The continuous coordination bonds and π-π stacking interactions facilitate hole-electron separation and electron transfer, and allow it to exhibit high photocatalytic activity toward ethylbenzene oxidation with O2/H2O as oxidants.

3.
ACS Appl Mater Interfaces ; 14(14): 16386-16393, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35352554

ABSTRACT

A powerful approach to generate photocatalysts for the highly selective reduction of nitrobenzene using light as the driving force is a combination of photosensitizers and electron-storable components in a cooperative photocatalysis fashion. Herein, a new precious metal-free photocatalyst, {ZnW-TPT}, was prepared by incorporating a Zn-substituted monovacant Keggin polyanion [SiZnW11O39]6- and a photoactive organic bridging link 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPT) into a framework. In this structure, the direct coordination bond between [SiZnW11O39]6- and the TPT ligand and the π-π interactions between TPT molecules help separate and migrate photogenerated carriers, which improves the photocatalytic activity of {ZnW-TPT}. The photoelectrochemical properties of {ZnW-TPT} were well studied by solid UV-vis absorption, fluorescence, transient photocurrent response, and electrochemical impedance spectroscopy tests. {ZnW-TPT} efficiently converts using hydrazine hydrate with 99% conversion and 99% selectivity for anilines under mild conditions.

4.
Inorg Chem ; 61(5): 2421-2427, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35076213

ABSTRACT

A powerful and promising route for developing novel photocatalysts for light-driven toluene oxidation in water under mild conditions is presented. Herein, a novel polyoxometalate-based metal-organic framework (POMOF), {Co4W22-DPNDI}, is prepared by incorporating the unusual Co4-sandwiched POM anion [Co4(µ-OH)2(SiW11O39)2]10- ({Co4W22}) and the photoactive organic bridging link N,N'-bis(4-pyridylmethyl)naphthalene diimide (DPNDI) into a framework. {Co4W22} is a good candidate for photocatalytic water oxidation. DPNDI is easily excited to form the radical species DPNDI* in the presence of an electron donor, which is beneficial for activation of the inert O2. Anion···π interactions and covalent bonds between {Co4W22} and DPNDI facilitate electron-hole separation and electron transfer. {Co4W22-DPNDI} displays high catalytic activity for the activation of the C(sp3)-H bond of toluene using light as a driving force and inexpensive water as an oxygen source under mild conditions. In particular, the yield and selectivity are improved by replacing oxygen with water, which may be ascribed to the release of protons during the water oxidation process that facilitate the generation of •OH.

5.
Inorg Chem ; 60(21): 16810-16816, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34672625

ABSTRACT

Developing new photocatalysts for sulfide oxidation utilizing in situ-generated 1O2 is very significant. Inspired by natural enzymatic processes, we synthesized a mimic sulfite oxidase (SO), {[Co(Mo4O13)(TPT)2]} (CoMo-TPT), by incorporating an isopolymolybdate anion [Mo4O13]2- into a 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPT)-based metal-organic framework under mild hydrothermal conditions. In this structure, {Mo4O13} units with intrinsic SO-like catalytic sites are beneficial for the selective oxidation of sulfite and thioether. The ultraviolet-visible spectra of CoMo-TPT exhibited strong absorption from 250 to 650 nm and potential application in the utilization of solar energy. Mott-Schottky measurements indicated that CoMo-TPT is an n-type semiconductor with a LUMO value of -0.70 V (vs NHE) and a HOMO value of 1.39 V. The transient photocurrent responses with strong current density cycles with visible light indicated CoMo-TPT has a high photochemical activity. The lower resistance indicated that CoMo-TPT has a higher efficiency of photoinduced electron and hole separation. CoMo-TPT displayed a high efficiency of 99% and a selectivity of 97.3% in photocatalytic oxidation of sulfides by utilizing in situ-generated 1O2 through a tandem process of formation of H2O2 from O2 followed by catalyzed disproportionation of H2O2.


Subject(s)
Metal-Organic Frameworks
6.
Inorg Chem ; 60(13): 10022-10029, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34133163

ABSTRACT

A powerful and attractive route to develop novel photocatalysts for C-N bond formation involves the use of pyrrolidine as the substrate and cocatalyst simultaneously. Herein, a new polyoxometalate (POM)-based metal-organic framework, namely, [Ni6(OH)3(H2O)9(DPNDIH)(SiW9O34)]2·2H2O (SiW9Ni6-DPNDI) (DPNDI = N,N'-di(4-pyridyl)-1,4,5,8-naphthalenediimide), was prepared by incorporating a Ni6 cluster-substituted POM anion and a photosensitizer (DPNDI) into a framework. The anion···π interactions and covalent bonds between SiW9Ni6 and DPNDI are beneficial for the consecutive electron separation and transfer. Under visible-light irradiation, DPNDI can be easily excited to generate radical species DPNDI* that could be further excited in the presence of the electron donor pyrrolidine for the inert O2 activation. SiW9Ni6-DPNDI showed a high efficiency in the photocatalysis of C-N bond formation under a mild condition by the synergy of DPNDI and SiW9Ni6. The results of the reaction were confirmed by gas chromatography and 1H NMR. In addition, SiW9Ni6-DPNDI exhibited a high sustainability without an obvious change in yields after five cycles.

7.
Inorg Chem ; 60(2): 682-691, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33355447

ABSTRACT

Two-dimensional (2D) crystalline porous materials with designable structures and high surface areas are currently a hot research topic in the field of proton- and electron-conducting materials, which provide great opportunities to orderly accommodate carriers in available spaces and to accurately understand the conducting path. The 2D dual-conductive inorganic framework [Co(H2O)6]2{[Co(H2O)4]4[WZn3(H2O)2(ZnW9O34)2]}·8H2O (Co6Zn5W19) is synthesized by combining [WZn3(H2O)2(ZnW9O34)2]12- (Zn5W19) and a Co(II) ion via a hydrothermal method. Due to the presence of a consecutive H-bonding network, electrostatic interactions, and packing effects between the framework and guest molecules, Co6Zn5W19 displays a high proton conductivity (3.55 × 10-4 S cm-1 under 98% RH and 358 K) by a synergistic effect of the combined components. Additionally, a photoactuated electron injection into the semiconducting materials is an important strategy for switching electronic conductivity, because it can efficiently reduce the frameworks without destroying the crystallinity. I-V curves of a tablet of Co6Zn5W19 in the reduced and oxidized states yield conductivities of 1.26 × 10-6 and 5 × 10-8 S cm-1, respectively. Moreover, Co6Zn5W19 is also successfully applied in the photocatalytic reduction of the toxic Cr(VI) metal ion by utilizing its excellent electronic storage capacity and Baeyer-Villiger (BV) oxidation in a molecular oxygen/aldehyde system.

SELECTION OF CITATIONS
SEARCH DETAIL
...