Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 121(6): 1831-1845, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38454569

ABSTRACT

Raman spectroscopy has found widespread usage in monitoring cell culture processes both in research and practical applications. However, commonly, preprocessing methods, spectral regions, and modeling parameters have been chosen based on experience or trial-and-error strategies. These choices can significantly impact the performance of the models. There is an urgent need for a simple, effective, and automated approach to determine a suitable procedure for constructing accurate models. This paper introduces the adoption of a design of experiment (DoE) method to optimize partial least squares models for measuring the concentration of different components in cell culture bioreactors. The experimental implementation utilized the orthogonal test table L25(56). Within this framework, five factors were identified as control variables for the DoE method: the window width of Savitzky-Golay smoothing, the baseline correction method, the order of preprocessing steps, spectral regions, and the number of latent variables. The evaluation method for the model was considered as a factor subject to noise. The optimal combination of levels was determined through the signal-to-noise ratio response table employing Taguchi analysis. The effectiveness of this approach was validated through two cases, involving different cultivation scales, different Raman spectrometers, and different analytical components. The results consistently demonstrated that the proposed approach closely approximated the global optimum, regardless of data set size, predictive components, or the brand of Raman spectrometer. The performance of models recommended by the DoE strategy consistently surpassed those built using raw data, underscoring the reliability of models generated through this approach. When compared to exhaustive all-combination experiments, the DoE approach significantly reduces calculation times, making it highly practical for the implementation of Raman spectroscopy in bioprocess monitoring.


Subject(s)
Bioreactors , Cell Culture Techniques , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Cell Culture Techniques/methods , Models, Biological , CHO Cells , Cricetulus , Animals
2.
Biotechnol J ; 19(1): e2300395, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38180295

ABSTRACT

The mammalian cell culture process is a key step in commercial therapeutic protein production and needs to be monitored and controlled due to its complexity. Raman spectroscopy has been reported for cell culture process monitoring by analysis of many important parameters. However, studies on in-line Raman monitoring of the cell culture process were mainly conducted on small or pilot scale. Developing in-line Raman analytical methods for commercial-scale cell culture process monitoring is more challenging. In this study, an in-line Raman analytical method was developed for monitoring glucose, lactate, and viable cell density (VCD) in the Chinese hamster ovary (CHO) cell culture process during commercial production of biosimilar adalimumab (1500 L). The influence of different Raman measurement channels was considered to determine whether to merge data from different channels for model development. Raman calibration models were developed and optimized, with minimum root mean square error of prediction of 0.22 g L-1 for glucose in the range of 1.66-3.53 g L-1 , 0.08 g L-1 for lactate in the range of 0.15-1.19 g L-1 , 0.31 E6 cells mL-1 for VCD in the range of 0.96-5.68 E6 cells mL-1 on test sets. The developed analytical method can be used for cell culture process monitoring during manufacturing and meets the analytical purpose of this study. Further, the influence of the number of batches used for model calibration on model performance was also studied to determine how many batches are needed basically for method development. The proposed Raman analytical method development strategy and considerations will be useful for monitoring of similar bioprocesses.


Subject(s)
Bioreactors , Cell Culture Techniques , Cricetinae , Animals , Cricetulus , CHO Cells , Cell Culture Techniques/methods , Lactic Acid/metabolism , Spectrum Analysis, Raman/methods , Glucose/metabolism , Batch Cell Culture Techniques/methods
3.
3 Biotech ; 13(8): 283, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37501919

ABSTRACT

Neutralizing monoclonal antibodies (nMABs) have been proved to be effective therapeutics in treating coronavirus disease (COVID-19). To enhance the potency of nMAB 553-15, we generated a novel monospecific tetravalent IgG1-(scFv)2 version. This was achieved by covalently fusing two forms of 553-15-derived single chain variable fragments (scFv) to the C-terminus of the hIgG1 (human Immunoglobulin G1) Fc fragment. We found that the Fc-fused VL-linker-VH format achieved similar binding affinity and neutralizing behavior as 553-15. The tetravalent versions were constructed by fusing the scFv domains to the C-terminus of nMAB 553-15. As a result, the tetravalent version 55,315-VLVH exhibited significantly higher binding activity to target spike protein variants and enhanced neutralization against VOCs (variants of concern) pseudovirus compared to 553-15. We also measured the Fc effector responses of candidates using wild-type Spike-expressing CHOK1 cells. The 55,315-VLVH enhanced the function of ADCP (antibody-dependent cellular phagocytosis) but had similar IL-6 release levels compared to the bivalent 553-15. It seemed that the novel tetravalent version avoids the pro-inflammatory effect induced by macrophage activation. However, the 55,315-VLVH displayed slightly increased potency in ADCC (antibody-dependent cell-mediated cytotoxicity) and CDC (complement-dependent cytotoxicity), which might contribute to higher systemic inflammation. Further investigation is necessary to determine whether the tetravalent version is beneficial to balance efficiency and safety against COVID-19.

4.
Biotechnol J ; 18(7): e2200616, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37102403

ABSTRACT

Controlling the process of CHO cell fed-batch culture is critical for biologics quality control. However, the biological complexity of cells has hampered the reliable process understanding for industrial manufacturing. In this study, a workflow was developed for the consistency monitoring and biochemical marker identification of the commercial-scale CHO cell culture process through 1 H NMR assisted with multivariate data analysis (MVDA). Firstly, a total of 63 metabolites were identified in this study object in 1 H NMR spectra of the CHO cell-free supernatants. Secondly, multivariate statistical process control (MSPC) charts were used to evaluate process consistency. According to MSPC charts, the batch-to-batch quality consistency was high, indicating the CHO cell culture process at the commercial scale was well-controlled and stable. Then, the biochemical marker identification was provided through orthogonal partial least square discriminant analysis (OPLS-DA) based S-line plots during the cell logarithmic expansion, stable growth, and decline phases. Identified biochemical markers of the three cell growth phases were as follows: L-glutamine, pyroglutamic acid, 4-hydroxyproline, choline, glucose, lactate, alanine, and proline were of the logarithmic growth phase; isoleucine, leucine, valine, acetate, and alanine were of the stable growth phase; acetate, glycine, glycerin, and gluconic acid were of the cell decline phase. Additional potential metabolic pathways that might influence the cell culture phase transitions were demonstrated. The workflow proposed in this study demonstrates that the combination of MVDA tools and 1 H NMR technology is highly appealing to the research of the biomanufacturing process, and applies well to provide guidance in future work on consistency evaluation and biochemical marker monitoring of the production of other biologics.


Subject(s)
Batch Cell Culture Techniques , Biological Products , Cricetinae , Animals , Cricetulus , Batch Cell Culture Techniques/methods , Biomarkers , Alanine , CHO Cells , Lactic Acid/metabolism
5.
Protein Expr Purif ; 189: 105973, 2022 01.
Article in English | MEDLINE | ID: mdl-34560256

ABSTRACT

The novel anti-PD-L1/TGFBR2-ECD fusion protein (BR102) comprises an anti-PD-L1 antibody (HS636) which is fused at the C terminus of the heavy chain to a TGF-ß1 receptor Ⅱ ectodomain (TGFBR2-ECD), and which can sequester the PD-1/PD-L1 pathway and TGF-ß bioactivity in the immunosuppressive tumor microenvironment. In the expression of TGFBR2-ECD wild-type fused protein (BR102-WT), a 50 kDa clipped species was confirmed to be induced by proteolytic cleavage at a "QKS" site located in the N-terminus of the ectodomain, which resulted in the formation of IgG-like clipping. The matrix metalloproteinase-9 was determined to be associated with BR102-WT digestion. In addition, it was observed that the N-glycosylation modifications of the fusion protein were tightly involved in regulating proteolytic activity and the levels of cleavage could be significantly suppressed by MMP-inhibitors. To avoid proteolytic degradation, eliminating protease-sensitive amino acid motifs and introducing potential glycosylation were performed. Three sensitive motifs were mutated, and the levels of clipping were strongly restrained. The mutant candidates exhibited similar binding affinities to hPD-L1 and hTGF-ß1 as well as highly purified BR102-WT2. Furthermore, the mutants displayed more significant proteolytic resistance than that of BR102-WT2 in the lysate incubation reaction and the plasma stability test. Moreover, the bifunctional candidate Mu3 showed an additive antitumor effect in MC38/hPD-L1 bearing models as compared to that of with anti-PD-L1 antibody alone. In conclusion, in this study, the protease-sensitive features of BR102-WT were well characterized and efficient optimization was performed. The candidate BR102-Mutants exhibited advanced druggability in drug stability and displayed desirable antitumor activity.


Subject(s)
Antibodies, Neoplasm/pharmacology , B7-H1 Antigen/antagonists & inhibitors , Colonic Neoplasms/therapy , Protein Processing, Post-Translational , Receptor, Transforming Growth Factor-beta Type II/antagonists & inhibitors , Recombinant Fusion Proteins/genetics , Animals , Antibodies, Neoplasm/genetics , Antibodies, Neoplasm/immunology , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , CHO Cells , Colonic Neoplasms/genetics , Colonic Neoplasms/immunology , Colonic Neoplasms/pathology , Cricetulus , Female , Glycosylation , Humans , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/immunology , Mice , Mice, Inbred C57BL , Mutation , Protein Domains , Proteolysis , Receptor, Transforming Growth Factor-beta Type II/genetics , Receptor, Transforming Growth Factor-beta Type II/immunology , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/pharmacology , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/immunology , Tumor Microenvironment/genetics , Xenograft Model Antitumor Assays
6.
Cell Rep ; 32(3): 107918, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32668215

ABSTRACT

Coronavirus disease 2019 (COVID-19) has become a worldwide threat to humans, and neutralizing antibodies have therapeutic potential. We have purified more than 1,000 memory B cells specific to SARS-CoV-2 S1 or its RBD (receptor binding domain) and obtain 729 paired heavy- and light-chain fragments. Among these, 178 antibodies test positive for antigen binding, and the majority of the top 17 binders with EC50 below 1 nM are RBD binders. Furthermore, we identify 11 neutralizing antibodies, eight of which show IC50 within 10 nM, and the best one, 414-1, with IC50 of 1.75 nM. Through epitope mapping, we find three main epitopes in RBD recognized by these antibodies, and epitope-B antibody 553-15 could substantially enhance the neutralizing abilities of most of the other antibodies. We also find that 515-5 could cross neutralize the SARS-CoV pseudovirus. Altogether, our study provides 11 potent human neutralizing antibodies for COVID-19 as therapeutic candidates.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Receptors, Virus/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal/therapeutic use , B-Lymphocytes/immunology , COVID-19 , Coronavirus Infections/therapy , Epitope Mapping , Epitopes/immunology , Humans , Immunologic Memory/immunology , Neutralization Tests , Pandemics , Pneumonia, Viral/therapy , Protein Domains/immunology , SARS-CoV-2
7.
Int Immunopharmacol ; 39: 229-235, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27494686

ABSTRACT

Sepsis is a serious disease that leads to severe inflammation, dysregulation of immune system, multi-organ failure and death. Innate response activator (IRA) B cells, which produce granulocyte-macrophage colony-stimulating factor (GM-CSF), protect against microbial sepsis. Lipid mediator lipoxin A4 (LXA4) exerts anti-inflammatory and immunoregulatory effects, and it has been reported that LXA4 receptor ALX/FPR2 is expressed on B cells. Here, we investigated the potential role of LXA4 on IRA B cells in lipopolysaccharide (LPS)-induced sepsis. We found that LXA4 significantly promoted the expansion of splenic IRA B cells and increased GM-CSF expression in splenic B cells with LPS stimulation. After splenectomy, LXA4 treatment did not change the serum or peritoneal IL-1ß, IL-6 and TNF-α levels in LPS-induced sepsis. LXA4 accelerated the migration of peritoneal B cells to spleen for their differentiation into IRA B cells, whereas this effect was independent of peritoneal macrophage. Furthermore, LXA4 enhanced the phosphorylation level of signal transducer and activator of transcription 5 (STAT5) in splenic B cells. These results suggest that LXA4 protects against LPS-induced sepsis by promoting the generation and migration of splenic IRA B cells, and the underlying molecular mechanism may be related to STAT5 activation. It might provide new insights and therapeutic approaches for treating sepsis.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , B-Lymphocytes/drug effects , Immunity, Innate , Lipoxins/therapeutic use , STAT5 Transcription Factor/metabolism , Sepsis/drug therapy , Animals , B-Lymphocytes/immunology , Cell Differentiation/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Female , Immunity, Innate/drug effects , Lipopolysaccharides/immunology , Mice , Mice, Inbred BALB C , Sepsis/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...