Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(15): eadn3924, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38598633

ABSTRACT

Our extensive field studies demonstrate that saline groundwater inland and freshened groundwater offshore coexist in the same aquifer system in the Pearl River delta and its adjacent shelf. This counterintuitive phenomenon challenges the commonly held assumption that onshore groundwater is typically fresh, while offshore groundwater is saline. To address this knowledge gap, we conduct a series of sophisticated paleo-hydrogeological models to explore the formation mechanism and evolution process of the groundwater system in the inland-shelf systems. Our findings indicate that shelf freshened groundwater has formed during the lowstands since late Pleistocene, while onshore saline groundwater is generated by paleo-seawater intrusion during the Holocene transgression. This reveals that terrestrial and offshore groundwater systems have undergone alternating changes on a geological timescale. The groundwater system exhibits hysteresis responding to paleoclimate changes, with a lag of 7 to 8 thousand years, suggesting that paleoclimatic forcings exert a significantly residual influence on the present-day groundwater system.

2.
Water Res ; 255: 121467, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38508041

ABSTRACT

Algal blooms have been identified as one major threat to coastal safety and marine ecosystem functioning, but the dominant mechanism regulating the formation of algal blooms remains controversial, ranging from physical control (via water column stability), the chemical control (via coastal nutrients) to joint control. Here we leveraged the unique data collected in the Hong Kong water over the annual cycle and past three decades, including direct observations of algal blooms and coastal nutrients and process model output of water column stability, and evaluated the differential competing hypotheses in regulating algal blooms. Our results demonstrate that the joint mechanism rather than the single mechanism effectively predicts all algal blooms. Meanwhile, we observed that the adequate nutrients (phosphate, PO43-) significantly originate from coastal groundwater. The production and fluctuation of PO43- in beach aquifers are primarily governed by groundwater temperature, leading to a sustained and sufficient supply of PO43- in a low groundwater temperature environment. Furthermore, along with submarine groundwater discharge (SGD), the ongoing release of PO43- in groundwater enters coastal waters and serves as sufficient nourishment for promoting algal blooms in coastal areas. These results highlight the importance of both physical and chemical mechanisms, as well as SGD, in regulating coastal algal blooms. These findings have practical implications for the prevention of coastal algal blooms and provide insights into mariculture, water security, and the sustainability of coastal ecosystems.

3.
Science ; 383(6686): eadf0630, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422130

ABSTRACT

In recent decades, climate change and other anthropogenic activities have substantially affected groundwater systems worldwide. These impacts include changes in groundwater recharge, discharge, flow, storage, and distribution. Climate-induced shifts are evident in altered recharge rates, greater groundwater contribution to streamflow in glacierized catchments, and enhanced groundwater flow in permafrost areas. Direct anthropogenic changes include groundwater withdrawal and injection, regional flow regime modification, water table and storage alterations, and redistribution of embedded groundwater in foods globally. Notably, groundwater extraction contributes to sea level rise, increasing the risk of groundwater inundation in coastal areas. The role of groundwater in the global water cycle is becoming more dynamic and complex. Quantifying these changes is essential to ensure sustainable supply of fresh groundwater resources for people and ecosystems.

4.
Sci Total Environ ; 905: 167138, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37734612

ABSTRACT

Coastal waters face increasing threats from hypoxia, which can have severe consequences for marine life and fisheries. This study aims to develop a machine learning approach for hypoxia monitoring by investigating the effectiveness of four tree-based models, considering spatiotemporal effects in model prediction, and adopting the SHapley Additive exPlanations (SHAP) approach for model interpretability, using the long-term climate and marine monitoring dataset in Tolo Harbour (Zone 1) and Mirs Bay (Zone 2), Hong Kong. The LightBoost model was found to be the most effective for predicting dissolved oxygen (DO) concentrations using spatiotemporal datasets. Considering spatiotemporal effects improved the model's bottom DO prediction performance (R2 increase 0.30 in Zone1 and 0.68 in Zone 2), although the contributions from temporal and spatial factors varied depending on the complexity of physical and chemical processes. This study focused not only on error estimates but also on model interpretation. Using SHAP, we propose that hypoxia is largely influenced by hydrodynamics, but anthropogenic activities can increase the bias of systems, exacerbating chemical reactions and impacting DO levels. Additionally, the high relative importance of silicate (Zone 1:0.11 and Zone 2: 0.19) in the model suggests that terrestrial sources, particularly submarine groundwater discharge, are important factors influencing coastal hypoxia. This is the first machine learning effort to consider spatiotemporal effects in four dimensions to predict DO concentrations, and we believe it contributes to the development of a forecasting tool for alarming hypoxia, combining real-time data and machine learning models in the near future.

5.
J Environ Manage ; 345: 118714, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37542806

ABSTRACT

Glacier-fed lakes are characterized by cold temperatures, high altitudes, and nutrient-poor conditions. Despite these challenging conditions, near-surface sediments of glacier-fed lakes harbor rich microbial communities that are critical for ecosystem functioning and serve as a bridge between aquatic ecology and the deep subsurface biosphere. However, there is limited knowledge regarding the microbial communities and their assembly processes in these sediments, which are highly vulnerable to climate change. To fill this knowledge gap, this study systematically analyzed environmental variables, microbial communities, diversity, co-occurrence relationships, and community assembly processes in the near-surface sediments of a glacier-fed lake in the Tibetan Plateau. The results revealed distinct vertical gradients in microbial diversity and subcommunities, highlighting the significant influence of selection processes and adaptive abilities on microbial communities. Specifically, specialists played a crucial role within the overall microbial communities. Microbial assembly was primarily driven by homogeneous selection, but its influence declined with increasing depth. In contrast, homogenizing dispersal showed an opposite pattern, and the bottom layer exhibited heterogeneous selection and undominated processes. These patterns of microbial assembly were primarily driven by environmental gradients, with significant contributions from processes associated to ammonium and organic matter deposition, as well as chemical precipitation in response to a warming climate. This study enhances our understanding of the microbial communities and assembly processes in the near-surface sediments of glacier-fed lakes and sheds light on geo-microbiological processes in climate-sensitive lacustrine sediments.


Subject(s)
Lakes , Microbiota , Lakes/microbiology , Ice Cover/microbiology , Climate Change
6.
Nat Commun ; 14(1): 3781, 2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37355684

ABSTRACT

Large-river deltaic estuaries and adjacent continental shelves have experienced multiple phases of transgressions and regressions to form interlayered aquifer-aquitard systems and are expected to host vast paleo-terrestrial groundwater hundreds of kilometres offshore. Here, we used offshore hydrogeology, marine geophysical reflections, porewater geochemistry, and paleo-hydrogeological models, and identified a previously unknown offshore freshened groundwater body with a static volume up to 575.6 ± 44.9 km3 in the Pearl River Estuary and adjacent continental shelf, with the freshwater extending as far as 55 km offshore. An integrated analysis of stable isotopic compositions and water quality indices reveals the meteoric origins of such freshened groundwater and its significance as potential potable water or raw water source for desalination. Hotspots of offshore freshened groundwater in large-river deltaic estuaries and adjacent continental shelves, likely a global phenomenon, have a great potential for exploitable water resources in highly urbanized coastal areas suffering from freshwater shortage.


Subject(s)
Groundwater , Water Pollutants, Chemical , Water Resources , Estuaries , Rivers , Fresh Water , Povidone , Environmental Monitoring , China
7.
Ground Water ; 61(4): 599-605, 2023.
Article in English | MEDLINE | ID: mdl-36545694
8.
J Hazard Mater ; 441: 129893, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36084468

ABSTRACT

Storm significantly deteriorates coastal water fecal pollution now and beyond. Questions relating to storm exerting on coastal water safety are often intertwined with both surface water and subsurface processes. Stormwater runoff is a vital metric for coastal water fecal pollution under current cognition, while the controls of subsurface system remain unclear. Here, this study leveraged two time-series field data collected in a sandy beach during storm and non-storm periods to probe subsurface Escherichia coli (E. coli) growth and exports to coastal waters under storm events. Results demonstrated that storm events can not only stimulate subsurface E. coli growth, but also accelerate subsurface E. coli exports into the receiving water. Storm-intensified rainfall injected more oxygenous rainwater in the shallow groundwater, subsequently stimulating subsurface E. coli growth. Storm-strengthened wave energy was responsible for accelerating subsurface E. coli exports through enhanced wave-induced recirculated seawater. This study proposes a new insight for the stress of storm events on microbial pollution in coastal waters. The findings are constructive to the prevention of beach ecosystem pollution and can pave the way for coastal safety management to future extreme weather.


Subject(s)
Escherichia coli , Groundwater , Ecosystem , Feces , Water , Water Microbiology
9.
Water Res ; 222: 118900, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35932703

ABSTRACT

Coastal Escherichia coli (E. coli) significantly influence ocean safety and public health, thus requiring an effective E. coli pollution monitoring. However conventional detection relying on manual field sampling is time-consuming. Here, this study established an E. coli estimation model based on thermal remote sensing of unmanned aerial vehicles (UAV). This model was developed against one-year comprehensive field work in a representative sandy beach and further validated against 50 beaches in Hong Kong to evaluate its applicability. The estimated E. coli concentrations were in a reliable agreement with direct measurements. For this model, this study deployed the radon-222 (222Rn) as a bridging tracer to couple UAV thermal images and coastal E. coli concentrations. Coastal 222Rn can be reflected on the UAV thermal images, and there was a good positive correlation between the 222Rn activity and coastal E. coli concentration via one-year field data. Hence, coupling the 222Rn activity estimated from UAV thermal images and the relationship between 222Rn and E. coli, this study can readily monitor coastal E. coli by UAV. These findings highlighted that UAV technology is an effective approach to measure the E. coli concentrations and can further pave the way for an efficient coastal E. coli monitoring and public health risk warning.


Subject(s)
Escherichia coli , Remote Sensing Technology , Unmanned Aerial Devices , Environmental Pollution , Hong Kong , Remote Sensing Technology/methods
10.
Environ Pollut ; 308: 119572, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35661808

ABSTRACT

In the estuarine ecosystem, microbial community plays a vital role in controlling biogeochemical processes. However, there is currently limited comprehensive study on the deterministic and stochastic processes that drive the microbial community assembly in the estuaries and adjacent shelves. In this study, we systematically investigated the co-occurrence relationship and microbial community assembly in the sediments along a large river-dominated estuary to shelf in the northern South China Sea during the wet season. The sampling sites were divided into estuary, transection, and shelf sections based on their salinity values. The microbial co-occurrence networks, hierarchical partitioning-based canonical analysis, null model, neutral community model, and the Mantel test were used to investigate the community assembly. Results suggested that microbial community in the estuary section exhibited more interactions and a higher positive interaction ratio than those in the transition and shelf sections. Stochastic processes dominated community assembly in the study, with homogenizing dispersal contributing the most. The estuary exhibited a higher degree of heterogeneous selection than the transition and shelf sections, whereas homogeneous selection showed an opposite trend. Only the estuary section showed dispersal limitation and undominated processes. The river inflow and the resulting environmental heterogeneity were believed to be the key regulators of the community assembly in the studied area. Our study improved the understanding of how microbial community assembly in estuaries and adjacent shelves.


Subject(s)
Estuaries , Microbiota , China , Geologic Sediments/analysis , Rivers , Seasons
11.
Water Res ; 219: 118620, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35598468

ABSTRACT

As global threats to freshwater lakes, eutrophication and harmful algal blooms (HABs) are governed by various biogeochemical, climatological and anthropogenic processes. Groundwater is key to join these processes in regulating HABs, but the underlying mechanisms remain unclear. Here, we leveraged basin-wide field data of Lake Taihu (China's largest eutrophic lake) and global archives, and demonstrate the dominance of evaporation on lacustrine groundwater discharge (LGD) in shallow lakes. We extrapolated decadal LGD and the derived nutrient loadings and found that HABs promptly consume ubiquitous groundwater borne nutrients, leading lake water N: P ratios 2-3 months time lagged behind LGD N: P ratios. We conclude that evaporation dominated LGD is an unraveled but crucial regulator of nutrient states and HABs in shallow lakes, which advocates synergistical studies from both climatological and hydrogeological perspective when restoring lake ecosystems.


Subject(s)
Groundwater , Lakes , China , Ecosystem , Environmental Monitoring , Eutrophication , Harmful Algal Bloom , Nutrients , Phosphorus/analysis
12.
J Hazard Mater ; 431: 128618, 2022 06 05.
Article in English | MEDLINE | ID: mdl-35278964

ABSTRACT

Fecal pollution poses a global threat to environmental safety and ecosystem, but the mechanism of microbial transport and occurrence in the beach groundwater system is still poorly explored. Here, we leveraged one-year field data of Escherichia coli (E. coli) and radon-222 (222Rn) and found that E. coli occurrence and transport in the sandy beach groundwater system can be delineated by 222Rn. The underlying mechanism behind this phenomenon is due to similar half-lives of 222Rn and E. coli in the sandy beach groundwater system. Thus, the unique relationship between 222Rn and E. coli can provide additional critical context to the microbial water quality assessments and ecosystem resilience. Also, the beach aquifer in this study is found to be a vital compartment for E. coli removal. The net E. coli removal/production capacity is identified to be highly impacted by submarine groundwater discharge. Finally, a conceptual model is constructed for a better understanding of the occurrences and characteristics of E. coli and 222Rn at multiple spatial scales. These findings are constructive to mitigate the hazardous influences of microbe on water quality, especially in recreational sandy beaches and mariculture zones.


Subject(s)
Groundwater , Radon , Ecosystem , Escherichia coli , Radon/analysis
13.
Ground Water ; 60(3): 434-450, 2022 05.
Article in English | MEDLINE | ID: mdl-35212406

ABSTRACT

Glaciers on the Tibetan Plateau play an important role in the local hydrological cycle. However, there are only few studies on groundwater in the alpine basins in the Tibetan Plateau which considered the effects of glaciers. Glaciers are extensively distributed in the Dongkemadi River Basin, which is a representative alpine basin in the Yangtze River source region. This study focuses on building a numerical groundwater flow model with glaciations using HydroGeoSphere (HGS) to simulate subglacial meltwater recharge to groundwater in the Dongkemadi River Basin in response to future climate changes. Effects of hydraulic conductivity, precipitation, and temperature on subglacial meltwater recharge to groundwater were discussed. Glacier changes in the future 50 years were predicted under different climate change scenarios. Results show that: (1) the average thickness of the glacier will change significantly; (2) the simulated rate of annual mean subglacial meltwater recharge to groundwater is 4.58 mm, which accounts for 6.33% of total groundwater recharge; and (3) hydraulic conductivity has the largest influence on subglacial meltwater recharge to groundwater, followed by temperature and precipitation. Results of this study are also important to sustainable water resource usage in the Yangtze River source region.


Subject(s)
Groundwater , Rivers , China , Climate Change , Ice Cover , Temperature
14.
Water Res ; 178: 115866, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32380295

ABSTRACT

Although submarine groundwater discharge (SGD) comprises an insignificant proportion of the global hydrologic cycle, it contributes significantly to chemical fluxes into the coastal waters due to concentrated constituents in coastal groundwater. Large nutrient loadings derived from SGD can lead to a series of environmental and ecological problems such as algal blooms, resulting in water discoloration, severe dissolved oxygen depletion, and eventually beach closures and massive fish kills. Previous studies have demonstrated the relationship between algal blooms and SGD obtained from direct measurement with seepage meters or from geo-tracer (i.e., radon and radium) based models; these traditional methods are time-consuming, laborious and point monitoring, and can hardly achieve a high spatiotemporal resolution SGD estimation, which is vital in revealing the effects of SGD to algal blooms over a long period. Alternatively, remote sensing methods for high spatiotemporal resolution SGD localization and quantification are applicable and effective. The temperature difference or anomaly between groundwater and coastal water extracted from satellite thermal images can be used as the indicator to localize and detect SGD especially its fresh component (or fresh SGD). In this study, multi-year (2005, 2011 and 2018) radon samples in Tolo Harbour were used to train regression models between in-situ radon (Rn) activity and the temperature anomaly by Landsat satellite thermal images. The models were used to estimate two-decade variations of fresh SGD in Tolo Harbour. The synergistic analysis between the time series of fresh SGD derived from regression models and high spatiotemporal resolution ecological metrics (chlorophyll-a, algal cell counts, and E.coli) leads to the findings that the increase of the fresh SGD associated with high nutrient concentrations is witnessed 10-20 days before the observations of algal bloom events. This study makes the first attempt to demonstrate the strong relation between the SGD and algal blooms over a vicennial span, and also provides a cost effective and robust technique to estimate SGD on a bay scale.


Subject(s)
Groundwater , Radon , Environmental Monitoring , Remote Sensing Technology , Seawater
15.
Sci Total Environ ; 703: 134897, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31731157

ABSTRACT

Submarine groundwater discharge (SGD)-driven nutrient inputs have long been speculated to sustain the high frequency of red tide occurrence in Tolo Harbour, Hong Kong, for its larger flux and higher nutrient loadings than river discharge. Based on analysis of high resolution time series biogeochemical and climatological data from 2000 to 2015, fresh SGD-derived dissolved inorganic nitrogen (DIN) is found to be a significant regulator of the annual cycle of phytoplankton community structure in the harbour. In the wet season, fresh SGD supplies nutrients with NH4+:NO3- ratio < 1 to the seawater, meanwhile creates an intensive vertical stratification environment. As a result, diatom which is a NO3- specialist, is prone to be the major group in the harbour. Fresh SGD delivers a same orders of magnitude of DIN as river and precipitation, but it is more important to phytoplankton community structure dynamics because fresh groundwater has smaller NH4+:NO3- ratio that significantly changes the ratio in the harbour. In the dry season, with the decline of fresh SGD and the ease of stratification, vertical mixing uplifts the nutrient (NH4+:NO3- ratio > 1) released from the bottom sediment leading to a NH4+ dominant environment in water column. Dinoflagellate and other groups then become dominant species of phytoplankton in the harbour. Fresh SGD has a major influence on the NH4+:NO3- ratio in the seawater compared to tide-driven SGD, even though the latter contributes a larger proportion SGD. Tide-driven SGD also produces NH4+ and NO3-, but NH4+:NO3- ratio are mainly subject to the beach environment (bare/mangrove beach), which does not change much seasonally, thus dominant DIN species do not change significantly throughout a year. In a conclusion, fresh SGD plays the most important role among all the endmembers in regulating the DIN composition in Tolo Harbour and its fluctuation mediates the phytoplankton community structure.


Subject(s)
Groundwater , Phytoplankton , Environmental Monitoring , Hong Kong , Nitrogen , Seawater
16.
Environ Pollut ; 255(Pt 1): 113069, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31541809

ABSTRACT

The Bohai Sea, one of the largest marginal seas in China, is extensively influenced by human and industrial activities. The pollutant loads from anthropogenic activities have induced severe ecological problems. The study investigates the physicochemical characteristics of seawater and sediments in Bohai Bay and Laizhou Bay of the Bohai Sea. The diversity and composition of microbial community in sediments are analyzed by 16S rRNA gene amplicon sequencing. The sequencing results present 16 phyla and 31 classes from the samples. Proteobacteria constituted a dominant phylum, of which the classes of Gamma-, Delta-, and Epsilon-are predominant sub-divisions. Nitrogen, phosphorus, and sulfur cycling related microbes present high abundance in both bays. The metabolism of organic matters is the main factor that influences the distribution of microbial communities in Bohai Bay, while the inflow of Yellow River is the dominant factor that influences the distribution of microbial communities in Laizhou Bay. Sulfur oxidizing process is expected to be positively influenced by heavy metals, while ammonia (NH4+) oxidizing process is prone to be negatively affected by heavy metals in both bays. Microbial communities in the offshore sediments of Laizhou Bay and the majority microbial communities in Bohai Bay sediments are subject to similar predominant controlling factors. This phenomenon is likely ascribed to ocean circulation. The results of this study can provide constructive guidelines on ecosystem management of marginal seas in Bohai and elsewhere.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/microbiology , Metals, Heavy/analysis , Microbiota/drug effects , Seawater/microbiology , Water Pollutants, Chemical/analysis , Bays/chemistry , Bays/microbiology , China , Geologic Sediments/chemistry , Metals, Heavy/toxicity , Oceans and Seas , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S , Rivers/chemistry , Rivers/microbiology , Seawater/chemistry , Water Pollutants, Chemical/toxicity
17.
Sensors (Basel) ; 19(14)2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31319596

ABSTRACT

The Gravity Recovery and Climate Experiment (GRACE) level-2 spherical harmonic (SH) solutions are noisy and thus require filtering. Filtering reduces noise but affects signal quality via signal leakage. Generally, a leakage correction is required for GRACE applications to remove leakage signal and recover the true signal. Forward modelling based on some a priori information is a widely used approach for leakage correction of GRACE data. The a priori information generally relies on global hydrological model simulations. There are many global hydrological models and therefore it is of interest to explore how different global hydrology model simulations influence leakage correction results. This study investigated the sensitivity of three leakage correction methods (additive method, scaling factor method and multiplicative method) to five global hydrology model simulations (four models from the Global Land Data Assimilation System (GLDAS) and the WaterGAP Global Hydrology Model (WGHM)). The sensitivity analysis was performed with observational data in Southwest China and one sub-region, Guangxi. Results show that although large differences were identified among the five global model simulations, the additive and scaling factor methods are less affected by the choice of a priori model in comparison to the multiplicative approach. For the additive and scaling factor methods, WGHM outperforms the other four GLDAS models in leakage correction of GRACE data. GRACE data corrected with the multiplicative method shows the highest amount of error, indicating this method is not applicable for leakage correction in the study area. This study also assessed the level-3 mascon (mass concentration) solutions of GRACE data. The mascon-based results are nearly as good as the leakage corrected results based on SH solutions.

18.
Sci Total Environ ; 664: 1133-1149, 2019 May 10.
Article in English | MEDLINE | ID: mdl-30901786

ABSTRACT

Biogeochemical reactions in an intertidal aquifer influences the submarine groundwater discharge (SGD) associated trace metal flux to the ocean. Tidal fluctuation greatly affects the physical mixing, and biogeochemical transformation of trace metals in the intertidal aquifer. This study presents the dynamics of trace metals (Fe, Mn, and Sr) and the production of Fe2+ in the salinity transition zone is discovered. The variations of Fe2+ are led by the shifts of both physical mixing and biogeochemical reaction during tidal fluctuation. The transformation from amorphous Fe(OH)3 to FeS is the main reason for the enrichment of Fe2+ in the zone with a salinity of 0.5-10. Mn behaves much less active than Fe in the intertidal aquifer due to the very limited Mn in the solid phase and the major driving force of Mn2+ variation is the physical mixing rather than geochemical reaction. Sr2+ behaves conservatively and shows a synchronous with salinity in the salinity transition zone. This study found that Fe2+ precipitates in a form not limited to Fe (hydro)oxides and the FeS minerals is the most possible form of precipitation in reduced aquifers. In that case, only a small part of Fe2+ discharges to the sea associated with SGD, but Mn2+ has a comparatively conservative property during the transport in the intertidal aquifer and majority of the Mn2+ originated from fresh groundwater will discharge with SGD in this study. The biogeochemical transformation pathways of Fe and Mn observed in this study provides insights into the cycles of Fe and Mn in an intertidal aquifer, which is of significance to accurately estimate the SGD derived Fe and Mn fluxes to the ocean.

19.
Water Res ; 144: 603-615, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30096687

ABSTRACT

The shores of the Pearl River estuary are home to 35 million people. Their wastes are discharged into the large river delta-front estuary (LDE), one of the most highly polluted systems in the world. Here we construct a radium reactive transport model to estimate the terrestrial groundwater discharge (TGD) into the highly urbanized Pearl River LDE. We find the TGD comprises only approximately 0.9% in term of water discharge compared to the river discharge. The TGD in the Pearl River LDE delivers significant chemical fluxes to the coast, which are comparable to the fluvial loadings from Pearl River and other world major rivers. Of particular importance is the flux of ammonium because of its considerable role in Pearl River estuary eutrophication and hypoxia. Unlike the ammonium in many other aquifers, the ammonium in the Pearl River aquifer system is natural and originated from organic matter remineralization by sulfate reduction in the extremely reducing environment. The TGD derived NH4+ is as much as 5% of the upstream Pearl River fluvial loading and 42% of the anthropogenic inputs. This high groundwater NH4+ flux may greatly intensify the eutrophication, shift the trophic states, and lead to alarming hypoxia within the affected ecosystems in the Pearl River LDE. The large TGD derived chemical fluxes will lead to deterioration of water and will potentially affect human health.


Subject(s)
Estuaries , Groundwater/chemistry , Radium/analysis , Ammonium Compounds/analysis , China , Ecosystem , Environmental Monitoring , Eutrophication , Isotopes/analysis , Rivers/chemistry , Urbanization
20.
Sci Total Environ ; 635: 586-597, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29679831

ABSTRACT

Coastal mangrove swamps play an important role in nutrient cycling at the land-ocean boundary. However, little is known about the role of periodic seawater-groundwater exchange in the nitrogen cycling processes. Seawater-groundwater exchange rates and inorganic nitrogen concentrations were investigated along a shore-perpendicular intertidal transect in Daya Bay, China. The intertidal transect comprises three hydrologic subzones (tidal creek, mangrove and bare mudflat zones), each with different physicochemical characteristics. Salinity and hydraulic head measurements taken along the transect were used to estimate the exchange rates between seawater and groundwater over a spring-neap tidal cycle. Results showed that the maximum seawater-groundwater exchange occurred within the tidal creek zone, which facilitated high-oxygen seawater infiltration and subsequent nitrification. In contrast, the lowest exchange rate found in the mangrove zone caused over-loading of organic matter and longer groundwater residence times. This created an anoxic environment conducive to nitrogen loss through the anammox and denitrification processes. Potential oxidation rates of ammonia and nitrite were measured by the rapid and high-throughput method and rates of denitrification and anammox were measured by the modified membrane inlet mass spectrometry (MIMS) with isotope pairing, respectively. In the whole transect, denitrification accounted for 90% of the total nitrogen loss, and anammox accounted for the remaining 10%. The average nitrogen removal rate was about 2.07g per day per cubic meter of mangrove sediments.

SELECTION OF CITATIONS
SEARCH DETAIL
...