Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
1.
Ultrason Sonochem ; 111: 107075, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39305649

ABSTRACT

In this study, we considered the compressible effect on the mutual interaction of two cavitation bubbles by correcting the sound field emitted by one bubble in the radial equations of the other bubble to first order in the Mach number of the flow, and the effect is represented by the incident wave acting on bubbles. The results illustrates that the incident wave can enhance the resonance response at the redistributed resonance frequency, which leads to an increase in radial acceleration and the secondary Bjerknes force, and rapid approach of bubbles. Furthermore, the influence of incident wave on the interaction of bubbles driven at lower frequencies is more significant, due to resonance enhancement caused by the proximity of natural frequencies and frequency multiplications of the external sound field. Our findings reveal that the compressible effect is not only critical to interaction in radial oscillations, but also in translational motion.

2.
Int J Biol Macromol ; 267(Pt 1): 131372, 2024 May.
Article in English | MEDLINE | ID: mdl-38580024

ABSTRACT

Clinically, open wounds caused by accidental trauma and surgical lesion resection are easily infected by external bacteria, hindering wound healing. Antibacterial photodynamic therapy has become a promising treatment strategy for wound infection. In this study, a novel antibacterial nanocomposite material (QMC NPs) was synthesized by curcumin, quaternized chitosan and mesoporous polydopamine nanoparticles. The results showed that 150 µg/mL QMC NPs had good biocompatibility and exerted excellent antibacterial activity against Staphylococcus aureus and Escherichia coli after blue laser irradiation (450 nm, 1 W/cm2). In vivo, QMC NPs effectively treated bacterial infection and accelerated the healing of infected wounds in mice.


Subject(s)
Anti-Bacterial Agents , Chitosan , Curcumin , Escherichia coli , Indoles , Nanoparticles , Polymers , Staphylococcus aureus , Chitosan/chemistry , Chitosan/pharmacology , Indoles/chemistry , Indoles/pharmacology , Curcumin/pharmacology , Curcumin/chemistry , Polymers/chemistry , Polymers/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanoparticles/chemistry , Animals , Mice , Staphylococcus aureus/drug effects , Porosity , Escherichia coli/drug effects , Microbial Sensitivity Tests , Wound Healing/drug effects , Bacterial Infections/drug therapy
3.
J Stomatol Oral Maxillofac Surg ; 125(5S1): 101902, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38685354

ABSTRACT

OBJECTIVES: The purpose of this study is to determine the feasibility of polyetheretherketone-based dental implants, and analyze the stress and strain around different kinds of dental implants by finite element analysis. METHODS: The radiographic data was disposed to models in Mimics 19.0. 3D models of implants, crowns and jawbones were established and combined in SolidWorks 2018. Appling axial and oblique loads of 100 N, cloud pictures were exported in Ansys Workbench 18.0 to calculate and analyze the stress and strain in and around different implants. RESULTS: Oblique load tended to deliver more stress to bone tissue than axial load. The uniformity of stress distribution was the best for 30% short carbon fiber reinforced polyetheretherketone implants at axial and buccolingual directions. Stress shielding phenomenon occurred at the neck of 60% continuous carbon fiber reinforced polyetheretherketone and titanium implants. Stress concentration appeared in PEEK implants and the load of bone tissue would aggravate. CONCLUSIONS: 30% short carbon fiber reinforced polyetheretherketone implants demonstrate a more uniform stress distribution in bone-implant contact and surrounding bone than titanium. Stress shielding and stress concentration may be avoided in bone-implant interface and bone tissue. Bone disuse-atrophy may be inhibited in PEEK-based implants.


Subject(s)
Benzophenones , Carbon Fiber , Dental Implants , Dental Prosthesis, Implant-Supported , Finite Element Analysis , Ketones , Polyethylene Glycols , Polymers , Ketones/chemistry , Carbon Fiber/chemistry , Polymers/chemistry , Dental Implants/adverse effects , Polyethylene Glycols/chemistry , Humans , Dental Prosthesis, Implant-Supported/adverse effects , Dental Prosthesis Design , Dental Stress Analysis , Denture, Partial, Fixed , Carbon , Stress, Mechanical , Titanium/chemistry
4.
Connect Tissue Res ; 65(1): 1-15, 2024 01.
Article in English | MEDLINE | ID: mdl-38166507

ABSTRACT

PURPOSE/AIM OF THE STUDY: To summarize and discuss macrophage properties and their roles and mechanisms in the process of osseointegration in a comprehensive manner, and to provide theoretical support and research direction for future implant surface modification efforts. MATERIALS AND METHODS: Based on relevant high-quality articles, this article reviews the role of macrophages in various stages of osseointegration and methods of implant modification. RESULTS AND CONCLUSIONS: Macrophages not only promote osseointegration through immunomodulation, but also secrete a variety of cytokines, which play a key role in the angiogenic and osteogenic phases of osseointegration. There is no "good" or "bad" difference between the M1 and M2 phenotypes of macrophages, but their timely presence and sequential switching play a crucial role in implant osseointegration. In the implant surface modification strategy, the induction of sequential activation of the M1 and M2 phenotypes of macrophages is a brighter prospect for implant surface modification than inducing the polarization of macrophages to the M1 or M2 phenotypes individually, which is a promising pathway to enhance the effect of osseointegration and increase the success rate of implant surgery.


Subject(s)
Macrophages , Osseointegration , Macrophages/metabolism , Cytokines/metabolism , Prostheses and Implants , Osteogenesis , Titanium/metabolism , Surface Properties
5.
Materials (Basel) ; 16(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37570168

ABSTRACT

Preformed fragments can deform or even fracture when subjected to contact blasts, which might lead to a reduction of the terminal effect. Therefore, to solve this problem, the effect of surface electroplating on the fragment deformation behavior under contact blasts was analyzed. Firstly, blast recovery tests were carried out on uncoated and coated fragments. After the contact blast, the two samples produced different deformation behaviors: the uncoated fragments were fractured, while the coated fragments maintained integrity. The tests were simulated by finite element simulation, and the deformation behavior of the different samples matched well with the test results, which can explain the protective effect of the coating after quantification. In order to further reveal the dynamic behavior involved, detonation wave theory and shock wave transmission theory in solids were used to calculate the pressure amplitude variation at the far-exploding surface of the fragments. The theoretical results showed that the pressure amplitude of the uncoated samples instantly dropped to zero after the shock wave passed through the far-exploding surface, which resulted in the formation of a tensile zone. But the pressure amplitude of the coated samples increased, transforming the tensile zone into the compression zone, thereby preventing the fracture of the fragment near the far-exploding surface, which was consistent with the test and simulated results. The test results, finite element simulations, and theories show that the coating can change the deformation behavior of the fragment and prevent the fracture phenomenon of the fragment. It also prevents the material from missing and a molten state of the fragment in the radial direction by microscopic observation and weight statistics.

6.
Int J Biol Macromol ; 250: 126153, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37558039

ABSTRACT

In recent years, a wide attention has been paid to curcumin in medicine due to its excellent physiological activities, including anti-inflammatory, antioxidant, antibacterial, and nerve damage repair. However, the low solubility, poor stability, and rapid metabolism of curcumin make its bioavailability low, which affects its development and application. As a unique biopolymer structure, protein-polysaccharide (PRO-POL)-based delivery system has the advantages of low toxicity, biocompatibility, biodegradability, and delayed release. Many scholars have investigated PRO-POL -based delivery systems to improve the bioavailability of curcumin. In this paper, we focus on the interactions between different proteins (e.g. casein, whey protein, soybean protein isolate, pea protein, zein, etc.) and polysaccharides (chitosan, sodium alginate, hyaluronic acid, pectin, etc.) and their effects on complexes diameter, surface charge, encapsulation drive, and release characteristics. The mechanism of the PRO-POL-based delivery system to enhance the bioavailability of curcumin is highlighted. In addition, the application of PRO-POL complexes loaded with curcumin is summarized, aiming to provide a reference for the construction and application of PRO-POL delivery systems.

7.
Front Microbiol ; 14: 1103956, 2023.
Article in English | MEDLINE | ID: mdl-36998411

ABSTRACT

Introduction: Polyetheretherketone (PEEK) is considered to be a new type of orthopedic implant material due to its mechanical properties and biocompatibility. It is becoming a replacement for titanium (Ti) due to its near-human-cortical transmission and modulus of elasticity. However, its clinical application is limited because of its biological inertia and susceptibility to bacterial infection during implantation. To solve this problem, there is an urgent need to improve the antibacterial properties of PEEK implants. Methods: In this work, we fixed antimicrobial peptide HHC36 on the 3D porous structure of sulfonated PEEK (SPEEK) by a simple solvent evaporation method (HSPEEK), and carried out characterization tests. We evaluated the antibacterial properties and cytocompatibility of the samples in vitro. In addition, we evaluated the anti-infection property and biocompatibility of the samples in vivo by establishing a rat subcutaneous infection model. Results: The characterization test results showed that HHC36 was successfully fixed on the surface of SPEEK and released slowly for 10 days. The results of antibacterial experiments in vitro showed that HSPEEK could reduce the survival rate of free bacteria, inhibit the growth of bacteria around the sample, and inhibit the formation of biofilm on the sample surface. The cytocompatibility test in vitro showed that the sample had no significant effect on the proliferation and viability of L929 cells and had no hemolytic activity on rabbit erythrocytes. In vivo experiments, HSPEEK can significantly reduce the bacterial survival rate on the sample surface and the inflammatory reaction in the soft tissue around the sample. Discussion: We successfully loaded HHC36 onto the surface of SPEEK through a simple solvent evaporation method. The sample has excellent antibacterial properties and good cell compatibility, which can significantly reduce the bacterial survival rate and inflammatory reaction in vivo. The above results indicated that we successfully improved the antibacterial property of PEEK by a simple modification strategy, making it a promising material for anti-infection orthopedic implants.

8.
Colloids Surf B Biointerfaces ; 215: 112492, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35430485

ABSTRACT

As orthopedic and dental implants, polyetheretherketone (PEEK) is expected to be a common substitute material of titanium (Ti) and its alloys due to its good biocompatibility, chemical stability, and elastic modulus close to that of bone tissue. It could avoid metal allergy and bone resorption caused by the stress shielding effect of Ti implants, widely studied in the medical field. However, the lack of biological activity is not conducive to the clinical application of PEEK implants. Therefore, the surface modification of PEEK has increasingly become one of the research hotspots. Researchers have explored various biomolecules modification methods to effectively enhance the osteogenic and antibacterial activities of PEEK and its composites. Therefore, this review mainly summarizes the recent research of PEEK modified by biomolecules and discusses the further research directions to promote the clinical transformation of PEEK implants.


Subject(s)
Osseointegration , Osteogenesis , Anti-Bacterial Agents/pharmacology , Benzophenones/pharmacology , Ketones/chemistry , Ketones/pharmacology , Polyethylene Glycols/chemistry , Polymers , Surface Properties , Titanium/pharmacology
9.
Micromachines (Basel) ; 12(12)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34945403

ABSTRACT

The micro-bolometer is important in the field of infrared imaging, although improvements in its performance have been limited by traditional materials. SiGe/Si multi-quantum-well materials (SiGe/Si MQWs) are novelty thermal-sensitive materials with a significantly high TCR and a comparably low 1/f noise. The application of such high-performance monocrystalline films in a micro-bolometer has been limited by film integration technology. This paper reports a SiGe/Si MQWs micro-bolometer fabrication with heterogeneous integration. The integration with the SiGe/Si MQWs handle wafer and dummy read-out circuit wafer was achieved based on adhesive wafer bonding. The SiGe/Si MQWs infrared-absorption structure and thermal bridge were calculated and designed. The SiGe/Si MQWs wafer and a 320 × 240 micro-bolometer array of 40 µm pitch L-type pixels were fabricated. The test results for the average absorption efficiency were more than 90% at the wavelength of 8-14 µm. The test pixel was measured to have a thermal capacity of 1.043 × 10-9 J/K, a thermal conductivity of 1.645 × 10-7 W/K, and a thermal time constant of 7.25 ms. Furthermore, the total TCR value of the text pixel was measured as 2.91%/K with a bias voltage of 0.3 V. The SiGe/Si MQWs micro-bolometer can be widely applied in commercial fields, especially in early medical diagnosis and biological detection.

10.
Micromachines (Basel) ; 12(12)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34945436

ABSTRACT

Three-dimensional integration technology provides a promising total solution that can be used to achieve system-level integration with high function density and low cost. In this study, a wafer-level 3D integration technology using PDAP as an intermediate bonding polymer was applied effectively for integration with an SOI wafer and dummy a CMOS wafer. The influences of the procedure parameters on the adhesive bonding effects were determined by Si-Glass adhesive bonding tests. It was found that the bonding pressure, pre-curing conditions, spin coating conditions, and cleanliness have a significant influence on the bonding results. The optimal procedure parameters for PDAP adhesive bonding were obtained through analysis and comparison. The 3D integration tests were conducted according to these optimal parameters. In the tests, process optimization was focused on Si handle-layer etching, PDAP layer etching, and Au pillar electroplating. After that, the optimal process conditions for the 3D integration process were achieved. The 3D integration applications of the micro-bolometer array and the micro-bridge resistor array were presented. It was confirmed that 3D integration based on PDAP adhesive bonding is suitable for the fabrication of system-on-chip when using MEMS and IC integration and that it is especially useful for the fabrication of low-cost suspended-microstructure on-CMOS-chip systems.

SELECTION OF CITATIONS
SEARCH DETAIL