Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 253: 114686, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36863162

ABSTRACT

BACKGROUND: Few studies have focused on the associations between air pollutants and multiple organ system diseases in the entire hospitalized population. The present study aims to explore the short-term effects of six routinely monitored air pollutants on the broad causes of hospital admissions and estimate the resulting hospital admission burdens. METHODS: Daily hospital admission records from 2017 to 2019 were obtained from the Wuhan Information center of Health and Family Planning. Generalized additive models (GAMs) were employed to evaluate the effects of air pollutants on the percent increase in the cause-specific daily number of hospital admissions. Increased hospital admission numbers, days, and expenses were also estimated. RESULTS: A total of 2636,026 hospital admissions were identified. We found that both PM2.5 and PM10 increased the risk of hospital admissions for most disease categories. Short-term exposure to PM2.5 was positively associated with hospitalizations of several rarely studied disease categories, such as diseases of the eye and adnexa (2.83%, 95%CI: 0.96-4.73%, P < 0.01) and diseases of the musculoskeletal system and connective tissue (2.17%, 95% CI: 0.88-3.47%, P < 0.001). NO2 was observed to have a robust effect on diseases of the respiratory system (1.36%, 95%CI: 0.74-1.98%, P < 0.001). CO was significantly associated with hospital admissions for six disease categories. Furthermore, each 10-µg/m3 increase in PM2.5 was associated with an annual increase of 13,444 hospital admissions (95% CI: 6239-20,649), 124,344 admission days (95% CI: 57,705-190,983), and 166-million-yuan admission expenses (95% CI: 77-255). CONCLUSION: Our study suggested that particulate matter (PM) had a short-term effect on hospital admissions of most major disease categories and resulted in a considerable hospital admission burden. In addition, the health effects of NO2 and CO emissions require more attention in megacities.


Subject(s)
Air Pollutants , Air Pollution , Humans , Cities , Nitrogen Dioxide/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Hospitalization , Air Pollutants/analysis , Particulate Matter/analysis , China/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis
2.
Environ Sci Pollut Res Int ; 30(6): 14402-14412, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36153419

ABSTRACT

Increasing research suggested that green spaces are associated with many health benefits, but evidence for the quantitative relationship between green spaces and mortality attributable to particulate matter with an aerodynamic diameter of 2.5 µm or less (PM2.5) is limited. We collected disease-specific mortality and PM2.5 data for a period of 4 years (2015-2018) along with green space data for an 8-year duration (2010-2017) in 31 provincial-level administrative regions of China. First, this study used the Integrated Exposure-Response model to estimate the mortality of four diseases attributable to PM2.5, including chronic obstructive pulmonary diseases (COPD), lung cancer (LC), ischemic heart disease (IHD), and cerebrovascular disease (CBVD). Then we performed linear regression and mixed-effects model to investigate the counteracting effect of green spaces on death caused by PM2.5 exposure. The differences in impacts among the Eastern, Central, and Western regions were explored using stratified analysis. The most significant results from linear regression analysis indicated that per 100 km2 of green spaces increase, there was a decreased total mortality (10-5) (COPD, LC, IHD, and CBVD) attributable to PM2.5 by - 4.012 [95% confidence interval (CI): - 5.535, - 2.488], while the reduction by mixed-linear regression analysis was - 2.702/105 (95% CI = - 3.645, - 1.759). Of all hysteresis analyses, the effect estimates (ß) at lag3 and lag4 were the largest. The effect of green spaces was more advantageous when targeting CBVD and the Eastern region. We found a negative correlation between green space exposure and mortality attributable to PM2.5, which can provide further support for city planners, government personnel, and others to build a healthier city and achieve national health goals.


Subject(s)
Air Pollutants , Air Pollution , Cerebrovascular Disorders , Lung Neoplasms , Myocardial Ischemia , Pulmonary Disease, Chronic Obstructive , Humans , Air Pollutants/analysis , Parks, Recreational , Particulate Matter/analysis , China , Environmental Exposure/analysis , Air Pollution/analysis
3.
J Psychiatr Res ; 156: 698-704, 2022 12.
Article in English | MEDLINE | ID: mdl-36410308

ABSTRACT

Air pollution is a risk factor for increased hospital admissions due to mental disorders, while green spaces have been linked with better mental health. We linked daily hospital admission records from Wuhan's 74 municipal hospitals from 2017 to 2019 with modeled annual average NO2 concentrations and added data on the residential surrounding green spaces with 250 m and 500 m buffers based on the normalized difference vegetation index (NDVI) using a land use regression model (LUR). The conditional logistic regression model was used to estimate the acute effect of short-term NO2 exposure, and stratification analyses were applied to explore the modification effect of long-term NO2 exposure and green spaces by estimating the odds ratios in the single- and dual-environmental factor groups. A total of 42,705 hospital admissions for mental disorders were identified. Short-term exposure to NO2 was associated with an increased risk of hospital admission for mental disorders. A 10 µg/m3 increase in NO2 (lag01 day) was associated with an increase in hospital admissions of 2.86% (95% CI, 2.05-3.68) for the total mental disorders. Compared with patients in the "low-NDVI/low-NO2" group (ER = 2.27%, 95% CI, 0.27-4.31), patients in the "high-NDVI/low-NO2" group (ER = 1.93%, -0.10-3.99) showed a lower and insignificant increase in hospitalizations for the total mental disorders, while greenness had a slight moderating effect in the high-level long-term NO2 exposure areas. This study suggested that green spaces may moderate the acute effect of NO2 exposure for mental disorder hospitalizations, especially in low-level long-term NO2 exposure areas.


Subject(s)
Mental Disorders , Parks, Recreational , Humans , Mental Disorders/epidemiology , Mental Disorders/therapy , Hospitals
4.
World J Pediatr ; 18(5): 333-342, 2022 05.
Article in English | MEDLINE | ID: mdl-35334045

ABSTRACT

BACKGROUND: The high risks for childhood respiratory diseases are associated with exposure to ambient air pollution. However, there are few studies that have explored the association between air pollution exposure and respiratory diseases among young children (particularly aged 0-2 years) based on the entire population in a megalopolis. METHODS: Daily hospital admission records were obtained from 54 municipal hospitals in Wuhan city, China. We included all children (aged 0-2 years) hospitalized with respiratory diseases between January 2017 and December 2018. Individual air pollution exposure assessment was used in Land Use Regression model and inverse distance weighted. Case-crossover design and conditional logistic regression models were adopted to estimate the hospitalization risk associated with air pollutants. RESULTS: We identified 62,425 hospitalizations due to respiratory diseases, of which 36,295 were pneumonia. Particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5) and nitrogen dioxide (NO2) were significantly associated with respiratory diseases and pneumonia. ORs of pneumonia were 1.0179 (95% CI 1.0097-1.0260) for PM2.5 and 1.0131 (95% CI 1.0042-1.0220) for NO2 at lag 0-7 days. Subgroup analysis suggested that NO2, Ozone (O3) and sulfur dioxide (SO2) only showed effects on pneumonia hospitalizations on male patients, but PM2.5 had effects on patients of both genders. Except O3, all pollutants were strongly associated with pneumonia in cold season. In addition, children who aged elder months and who were in central urban areas had a higher hospitalization risk. CONCLUSIONS: Air pollution is associated with higher hospitalization risk for respiratory diseases, especially pneumonia, among young children, and the risk is related to gender, month age, season and residential location.


Subject(s)
Air Pollutants , Air Pollution , Pneumonia , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Child, Preschool , China/epidemiology , Cross-Over Studies , Female , Humans , Infant , Infant, Newborn , Male , Nitrogen Dioxide/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Pneumonia/epidemiology , Pneumonia/etiology
5.
Article in English | MEDLINE | ID: mdl-36613068

ABSTRACT

PM2.5, a type of particulate matter with an aerodynamic diameter of less than 2.5 µm, is associated with the occurrence of cardiovascular diseases (CVDs), while greenness seems to be associated with better cardiovascular health. We identified 499,336 CVD cases in Wuhan's 74 municipal hospitals between 2017 and 2019. A high-resolution PM2.5 model and a normalized difference vegetation index (NDVI) map were established to estimate individual exposures. The time-stratified case-crossover design and conditional logistic regression models were applied to explore the associations between PM2.5 and CVDs under different levels of environmental factors. Greenness could alleviate PM2.5-induced hospitalization risks of cardiovascular diseases. Compared with patients in the low-greenness group (ER = 0.99%; 95% CI: 0.71%, 1.28%), patients in the high-greenness group (ER = 0.45%; 95% CI: 0.13%, 0.77%) showed a lower increase in total CVD hospitalizations. After dividing the greenness into quartiles and adding long-term PM2.5 exposure as a control factor, no significant PM2.5-associated hospitalization risks of CVD were identified in the greenest areas (quartile 4), whether the long-term PM2.5 exposure level was high or low. Intriguingly, in the least green areas (quartile 1), the PM2.5-induced excess risk of CVD hospitalization was 0.58% (95% CI: 0.04%, 1.11%) in the long-term high-level PM2.5 exposure group, and increased to 1.61% (95% CI: 0.95%, 2.27%) in the long-term low-level PM2.5 exposure group. In the subgroup analysis, males and participants aged 55-64 years showed more significant increases in the PM2.5-induced risk of contracting CVDs with a reduction in greenness and fine particle exposure conditions. High residential greenness can greatly alleviate the PM2.5-induced risk of cardiovascular admission. Living in the areas with long-term low-level PM2.5 may make people more sensitive to short-term increases in PM2.5, leading to CVD hospitalization.


Subject(s)
Air Pollutants , Air Pollution , Cardiovascular Diseases , Humans , Male , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/chemically induced , Cities , Environmental Exposure/analysis , Hospitalization , Logistic Models , Particulate Matter/analysis , Cross-Over Studies
6.
Article in English | MEDLINE | ID: mdl-33921784

ABSTRACT

Shortening of the gestational duration has been found associated with ambient air pollution exposure. However, the critical exposure windows of ambient air pollution for gestational duration remain inconsistent, and the association between ambient air pollution and early term births (ETB, 37 to 38 weeks) has rarely been studied relative to preterm births (PTB, 28-37 weeks). A time-series study was conducted in Shiyan, a medium-sized city in China. Birth information was collected from the Shiyan Maternity and Child Health Hospital, and 13,111 pregnant women who gave birth between 2015 and 2017 were included. Data of the concentrations of air pollutants, including PM10, PM2.5, NO2, and SO2 and meteorological data, were collected in the corresponding gestational period. The Cox regression analysis was performed to estimate the relationship between ambient air pollution exposure and the risk of preterm birth after controlling the confounders, including maternal age, education, Gravidity, parity, fetal gender, and delivery mode. Very preterm birth (VPTB, 28-32 weeks) as a subtype of PTB was also incorporated in this study. The risk of VPTB and ETB was positively associated with maternal ambient air pollution exposure, and the correlation of gaseous pollutants was stronger than particulate matter. With respect to exposure windows, the critical trimester of air pollutants for different adverse pregnancy outcomes was different. The exposure windows of PM10, PM2.5, and SO2 for ETB were found in the third trimester, with HRs (hazard ratios) of 1.06 (95%CI: 1.04, 1.09), 1.07 (95%CI: 1.04, 1.11), and 1.28 (95%CI: 1.20, 1.35), respectively. However, for NO2, the second and third trimesters exhibited similar results, the HRs reaching 1.10 (95%CI: 1.03, 6.17) and 1.09 (95%CI: 1.03,1.15), respectively. This study extends and strengthen the evidence for a significant correlation between the ambient air pollution exposure during pregnancy and the risk of not only PTB but, also, ETB. Moreover, our findings suggest that the exposure windows during pregnancy vary with different air pollutants and pregnancy outcomes.


Subject(s)
Air Pollutants , Air Pollution , Premature Birth , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Child , China/epidemiology , Female , Humans , Infant, Newborn , Maternal Exposure/adverse effects , Particulate Matter/adverse effects , Particulate Matter/analysis , Pregnancy , Premature Birth/chemically induced , Premature Birth/epidemiology
7.
Respir Res ; 22(1): 128, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33910560

ABSTRACT

BACKGROUND: Positive associations between ambient PM2.5 and cardiorespiratory disease have been well demonstrated during the past decade. However, few studies have examined the adverse effects of PM2.5 based on an entire population of a megalopolis. In addition, most studies in China have used averaged data, which results in variations between monitoring and personal exposure values, creating an inherent and unavoidable type of measurement error. METHODS: This study was conducted in Wuhan, a megacity in central China with about 10.9 million people. Daily hospital admission records, from October 2016 to December 2018, were obtained from the Wuhan Information center of Health and Family Planning, which administrates all hospitals in Wuhan. Daily air pollution concentrations and weather variables in Wuhan during the study period were collected. We developed a land use regression model (LUR) to assess individual PM2.5 exposure. Time-stratified case-crossover design and conditional logistic regression models were adopted to estimate cardiorespiratory hospitalization risks associated with short-term exposure to PM2.5. We also conducted stratification analyses by age, sex, and season. RESULTS: A total of 2,806,115 hospital admissions records were collected during the study period, from which we identified 332,090 cardiovascular disease admissions and 159,365 respiratory disease admissions. Short-term exposure to PM2.5 was associated with an increased risk of a cardiorespiratory hospital admission. A 10 µg/m3 increase in PM2.5 (lag0-2 days) was associated with an increase in hospital admissions of 1.23% (95% CI 1.01-1.45%) and 1.95% (95% CI 1.63-2.27%) for cardiovascular and respiratory diseases, respectively. The elderly were at higher PM-induced risk. The associations appeared to be more evident in the cold season than in the warm season. CONCLUSIONS: This study contributes evidence of short-term effects of PM2.5 on cardiorespiratory hospital admissions, which may be helpful for air pollution control and disease prevention in Wuhan.


Subject(s)
Cardiovascular Diseases/epidemiology , Environmental Exposure/adverse effects , Particulate Matter/adverse effects , Patient Admission , Respiratory Tract Diseases/epidemiology , Seasons , Adult , Age Factors , Aged , Aged, 80 and over , Cardiovascular Diseases/diagnosis , China/epidemiology , Female , Humans , Male , Middle Aged , Particle Size , Respiratory Tract Diseases/diagnosis , Risk Assessment , Risk Factors , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...