Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 96(3): 1073-1083, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29617867

ABSTRACT

In the present study, we investigated the influence of weaning on antioxidant status, intestinal integrity, mitochondrial function, and the mitophagy level in piglets (weaned at 21 d) during the 1 wk after weaning. The redox status was measured by antioxidant enzymes activities, related genes expression, and malondialdehyde (MDA) content in jejunum. The intestinal barrier function was assessed by the Ussing chamber and expression of tight junction proteins in the jejunum. The function of intestine mitochondria was measured by mitochondrial DNA (mtDNA) content and activities of mitochondria oxidative phosphorylation complexes. The levels of light chain 3-1 (LC3-I), light chain 3-II (LC3-II), PTEN-induced putative kinase 1 (PINK1), and Parkin were determined to investigate whether mitophagy is involved in the weaning process. The results showed that, as compared with the preweaning phase (d 0), weaning suppressed (P < 0.05) the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) on d 3 and d 7 postweaning, decreased (P < 0.05) the expression of copper and zinc superoxide dismutase (Cu/Zn-SOD), manganese-containing superoxide dismutase (Mn-SOD) on d 3 postweaning, declined (P < 0.05) the level of glutathione peroxidase 1 (GPX-1) and glutathione peroxidase 4 (GPX-4) on d 3 and d 7 postweaning, and increased (P < 0.05) MDA content in jejunum on d 3 and d 7 postweaning. The jejunal transepithelial electrical resistance and levels of occludin, claudin-1, and zonula occludens-1 on d 3 and d 7 postweaning were reduced (P < 0.05), and paracellular flux of fluorescein isothiocyanatedextran (4 kDa) on d 3 and d 7 postweaning was increased (P < 0.05). Weaning induced mitochondrial dysfunction, as demonstrated by decreased (P < 0.05) content of mtDNA on d 3 and d 7 postweaning and declined (P < 0.05) activities of mitochondria complexes (I, II, III, IV) in jejunum on d 1, d 3, and d 7 postweaning. Weaning led to an increased (P < 0.05) expression level of mitophagy-related proteins, PINK1 and Parkin, in the intestinal mitochondria, as well as an enhancement (P < 0.05) of the ratio of LC3-II to LC3-I content in the jejunal mucosa on d 1, d 3, and d 7 postweaning. These results suggest that weaning disrupted intestinal oxidative balance, and this imbalance may impair intestinal barrier and mitochondrial function and trigger mitophagy in piglets.


Subject(s)
Antioxidants/metabolism , Mitophagy , Swine/physiology , Animals , Female , Glutathione Peroxidase/metabolism , Intestinal Mucosa/metabolism , Jejunum/metabolism , Male , Malondialdehyde/metabolism , Mitochondria/metabolism , Oxidation-Reduction , Oxidative Stress , Superoxide Dismutase/metabolism , Tight Junction Proteins/metabolism , Weaning
2.
Biol Trace Elem Res ; 185(2): 356-363, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29468611

ABSTRACT

The effects of copper/zinc-loaded montmorillonite (Cu/Zn-Mt) on growth performance, mineral retention, intestinal morphology, mucosa antioxidant capacity, and cytokine contents in weaned piglets were investigated in the present study. One hundred eight piglets weaned at 21 ± 1 days of age (Duroc × Landrace× Yorkshire; average initial weight of 6.36 kg) were allotted to three treatments for 2 weeks. The three treatments were as follows: (1) control group: basal diet; (2) Cu/Zn-Mt group: basal diet + 39 mg/kg Cu and 75 mg/kg Zn as Cu/Zn-Mt; (3) Cu + Zn + Mt group: basal diet + mixture of CuSO4, ZnSO4, and Mt (equal amount of Cu, Zn, and Mt to the Cu/Zn-Mt group). Each treatment had six pens of six piglets. The results showed that as compared with the control group and the Cu + Zn + Mt group, Cu/Zn-Mt supplementation increased (P < 0.05) the average daily gain and the gain/feed ratio; Cu/Zn-Mt supplementation increased (P < 0.05) the Cu and Zn concentrations in serum, jejunum, and ileum mucosa, villus height, the ratio of villus height to crypt depth, and the activities of SOD, GSH-Px, and IL-10 levels, and decreased the malondialdehyde concentrations in the jejunum and ileum, and intestinal IL-1ß, IL-6, and TNF-α levels. Moreover, supplementation with the mixture of CuSO4, ZnSO4, and Mt had no effect on the growth performance, but increased the mucosa Cu and Zn concentrations, intestinal morphology, antioxidant capacity, and immune function in the duodenum, while it had no effect on the above indexes in the jejunum and ileum. The results indicated that Mt could be used as a controlled carrier for Cu and Zn, which made Cu/Zn-Mt have better biological activities in the intestine than the mixture of Cu, Zn, and Mt.


Subject(s)
Antioxidants/metabolism , Bentonite/pharmacology , Copper/pharmacology , Cytokines/metabolism , Intestines/drug effects , Minerals/metabolism , Zinc/pharmacology , Animals , Bentonite/administration & dosage , Copper/administration & dosage , Copper/analysis , Dietary Supplements , Dose-Response Relationship, Drug , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestines/anatomy & histology , Intestines/growth & development , Swine , Zinc/administration & dosage , Zinc/analysis
3.
J Anim Sci ; 93(3): 1157-64, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26020893

ABSTRACT

A total of 144 piglets (Duroc × Landrace × Yorkshire; average initial weight of 6.13 kg weaned at 21 ± 1 d age) were allotted to 4 treatments for 2 wk, each of which had 6 pens with 6 pigs per pen. After the feeding experiment, 6 pigs per treatment were slaughtered to investigate the effects of cello-oligosaccharide (COS) on intestinal microbiota and epithelial barrier function. The COS was added to the basal diet at 0, 1.5, 3.0, and 4.5 g/kg diet at the expense of corn, respectively. Plasma -lactate, diamine oxidase (DAO), and the Ussing chamber technique were used to determine the intestinal barrier function. 16S rRNA-based methods were used for intestinal microbiota analysis. The results showed that incremental levels of COS had no effect ( > 0.05) on growth performance. Incremental levels of COS increased lactobacilli in jejunal and colonic contents ( < 0.05); decreased in jejunal contents ( < 0.05) and and in colonic contents ( < 0.05); reduced plasma DAO (linear, = 0.013, and quadratic, = 0.037); increased jejunal mucosa DAO (linear, = 0.003, and quadratic, = 0.008); decreased fluorescein isothiocyanate dextran 4 kDa flux of jejunum and colon ( < 0.05); and increased transepithelial electrical resistance (TER) in colon ( < 0.05), claudin-1 protein expression in jejunal mucosa (linear, = 0.001, and quadratic, = 0.003), and protein expressions of claudin-1 and zonula occludens-1 (ZO-1) in colonic mucosa linearly ( = 0.001 and = 0.001, respectively) and quadratically ( = 0.001 and = 0.002, respectively). The results indicated that the improved microbial ecosystem in the presence of COS might contribute to improvement in intestinal barrier function and tight junction proteins. Results also showed that the appropriate dietary COS supplementation level was 3.0 g/kg in weaned pig diets under our trial conditions.


Subject(s)
Cellulose/metabolism , Gastrointestinal Microbiome/drug effects , Intestinal Absorption/drug effects , Intestinal Mucosa/drug effects , Oligosaccharides/pharmacology , Swine/physiology , Animals , Colon/microbiology , Diet/veterinary , Dietary Supplements , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Female , Intestinal Absorption/physiology , Intestinal Mucosa/physiology , Jejunum/microbiology , Male , Oligosaccharides/metabolism , Streptococcus suis/drug effects , Streptococcus suis/isolation & purification , Swine/microbiology , Tight Junction Proteins/drug effects , Tight Junction Proteins/physiology
4.
J Anim Sci ; 93(4): 1599-607, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26020182

ABSTRACT

The present study evaluated the beneficial effect of diosmectite-zinc oxide composite (DS-ZnO) on improving intestinal barrier restoration in piglets after acetic acid challenge and explored the underlying mechanisms. Twenty-four 35-d-old piglets (Duroc × Landrace × Yorkshire), with an average weight of 8.1 kg, were allocated to 4 treatment groups. On d 1 of the trial, colitis was induced via intrarectal injection of acetic acid (10 mL of 10% acetic acid [ACA] solution for ACA, DS-ZnO, and mixture of diosmectite [DS] and ZnO [DS+ZnO] groups) and the control group was infused with saline. Twenty-four hours after challenged, piglets were fed with the following diets: 1) control group (basal diet), 2) ACA group (basal diet), 3) DS-ZnO group (basal diet supplemented with DS-ZnO), and 4) DS+ZnO group (mixture of 1.5 g diosmectite [DS]/kg and 500 mg Zn/kg from ZnO [equal amount of DS and ZnO in the DS-ZnO treatment group]). On d 8 of the trial, piglets were sacrificed. The results showed that DS-ZnO supplementation improved (P < 0.05) ADG, ADFI, and transepithelial electrical resistance and decreased (P < 0.05) fecal scores, crypt depth, and fluorescein isothiocyanate-dextran 4 kDa (FD4) influx as compared with ACA group. Moreover, DS-ZnO increased (P < 0.05) occludin, claudin-1, and zonula occluden-1 expressions; reduced (P < 0.05) caspase-9 and caspase-3 activity and Bax expression; and improved (P < 0.05) Bcl2, XIAP, and PCNA expression. Diosmectite-zinc oxide composite supplementation also increased (P < 0.05) TGF-ß1 expression and ERK1/2 and Akt activation. These results suggest that DS-ZnO attenuates the acetic acid-induced colitis by improving mucosa barrier restoration, inhibiting apoptosis, and improving intestinal epithelial cells proliferation and modulation of TGF-ß1 and ERK1/2 and Akt signaling pathway.


Subject(s)
Acetic Acid/adverse effects , Intestinal Mucosa/drug effects , MAP Kinase Signaling System/drug effects , Proto-Oncogene Proteins c-akt/drug effects , Silicates/pharmacology , Swine/physiology , Transforming Growth Factor beta1/drug effects , Zinc Oxide/pharmacology , Acetic Acid/administration & dosage , Acetic Acid/pharmacology , Animals , Apoptosis/drug effects , Apoptosis/physiology , Caspases/drug effects , Caspases/physiology , Colitis/chemically induced , Colitis/drug therapy , Colitis/veterinary , Dietary Supplements , Disease Models, Animal , Injections , Intestinal Mucosa/pathology , Intestinal Mucosa/physiopathology , MAP Kinase Signaling System/physiology , Proto-Oncogene Proteins c-akt/physiology , Silicates/administration & dosage , Swine Diseases/chemically induced , Swine Diseases/drug therapy , Swine Diseases/physiopathology , Tight Junction Proteins/drug effects , Tight Junction Proteins/physiology , Transforming Growth Factor beta1/physiology , Zinc Oxide/administration & dosage
5.
Poult Sci ; 93(3): 581-8, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24604851

ABSTRACT

The current study investigated the efficacy of a probiotic mixture on ameliorating heat stress-induced impairment of intestinal microflora, morphology, and barrier integrity in broilers. The probiotic mixture contained Bacillus licheniformis, Bacillus subtilis, and Lactobacillus plantarum. Three hundred sixty 21-d-old Ross 308 male broilers were allocated in 4 experimental treatments, each of which was replicated 6 times with 15 broilers per replicate. A 2 × 2 factorial design was used in the study, and the main factors were composed of diet (basal diet or addition of 1.5 g/kg of probiotic mixture) and temperature (thermoneutral zone or heat stress). From d 22 to 42, birds were either raised in a thermoneutral zone (22°C) or subjected to cyclic heat stress by exposing them to 33°C for 10 h (from 0800 to 1800) and 22°C from 1800 to 0800. Compared with birds kept in the thermoneutral zone, birds subjected to heat stress had reduced ADG and ADFI; lower viable counts of Lactobacillus and Bifidobacterium and increased viable counts of coliforms and Clostridium in small intestinal contents; shorter jejunal villus height, deeper crypt depth, and lower ratio of villus height to crypt depth; decreased jejunal transepithelial electrical resistance and a higher level of jejunal paracellular permeability of fluorescein isothiocyanate dextran 4 kDa; and downregulated protein levels of occludin and zonula occludens-1 (P < 0.05). Supplemental probiotics increased (P < 0.05) small intestinal Lactobacillus and Bifidobacterium, jejunal villus height, protein level of occludin, and decreased (P < 0.05) feed to gain ratio and small intestinal coliforms. These results indicate that dietary addition of probiotic mixture was effective in partially ameliorating intestinal barrier function. But no temperature × diet interaction was observed in the present study, revealing that the supplemented probiotics had the same effect at both temperatures.


Subject(s)
Chickens/microbiology , Chickens/physiology , Gene Expression Regulation/drug effects , Heat-Shock Response/drug effects , Intestines/drug effects , Probiotics/metabolism , Animal Feed/analysis , Animals , Avian Proteins/genetics , Avian Proteins/metabolism , Bacillus/chemistry , Blotting, Western/veterinary , Chickens/anatomy & histology , Chickens/growth & development , Diet/veterinary , Intestines/anatomy & histology , Intestines/microbiology , Intestines/physiology , Lactobacillus plantarum/chemistry , Male , Microbiota/drug effects , Probiotics/administration & dosage , Temperature , Tight Junction Proteins/genetics , Tight Junction Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...