Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 9(7)2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31247961

ABSTRACT

The integration of surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) has attracted increasing interest and is highly probable to improve the sensitivity and reproducibility of spectroscopic investigations in biomedical fields. In this work, dual-mode SERS and SEF hierarchical structures have been developed on a single bio-metallic substrate. The hierarchical structure was composed of micro-grooves, nano-particles, and nano-ripples. The crystal violet was selected as reporter molecule and both the intensity of Raman and fluorescence signals were enhanced because of the dual-mode SERS-SEF phenomena with enhancement factors (EFs) of 7.85 × 105 and 14.32, respectively. The Raman and fluorescence signals also exhibited good uniformity with the relative standard deviation value of 2.46% and 5.15%, respectively. Moreover, the substrate exhibited high sensitivity with the limits of detection (LOD) as low as 1 × 10-11 mol/L using Raman spectroscopy and 1 × 10-10 mol/L by fluorescence spectroscopy. The combined effect of surface plasmon resonance and "hot spots" induced by the hierarchical laser induced periodical surface structures (LIPSS) was mainly contributed to the enhancement of Raman and fluorescence signal. We propose that the integration of SERS and SEF in a single bio-metallic substrate is promising to improve the sensitivity and reproducibility of detection in biomedical investigations.

2.
Nanomaterials (Basel) ; 9(1)2019 Jan 11.
Article in English | MEDLINE | ID: mdl-30641948

ABSTRACT

Additive manufacturing (AM) has become more prominent in leading industries. Recently, there have been intense efforts to achieve a fully functional 3D structural electronic device by integrating conductive structures into AM parts. Here, we introduce a simple approach to creating a conductive layer on a polymer AM part by CO2 laser processing. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy were employed to analyze laser-induced modifications in surface morphology and surface chemistry. The results suggest that conductive porous graphene was obtained from the AM-produced carbon precursor after the CO2 laser scanning. At a laser power of 4.5 W, the lowest sheet resistance of 15.9 Ω/sq was obtained, indicating the excellent electrical conductivity of the laser-induced graphene (LIG). The conductive graphene on the AM parts could serve as an electrical interconnection and shows a potential for the manufacturing of electronics components. An interdigital electrode capacitor was written on the AM parts to demonstrate the capability of LIG. Cyclic voltammetry, galvanostatic charge-discharge, and cyclability testing demonstrated good electrochemical performance of the LIG capacitor. These findings may create opportunities for the integration of laser direct writing electronic and additive manufacturing.

3.
Nanomaterials (Basel) ; 8(8)2018 Aug 07.
Article in English | MEDLINE | ID: mdl-30087292

ABSTRACT

With the recent expansion of additive manufacturing (AM) in industries, there is an intense need to improve the surface quality of AM parts. A functional surface with extreme wettability would explore the application of AM in medical implants and microfluid. In this research, we propose to superimpose the femtosecond (fs) laser induced period surface structures (LIPSS) in the nanoscale onto AM part surfaces with the micro structures that are fabricated in the AM process. A hierarchical structure that has a similar morphology to a lotus leaf surface is obtained by combining the advantages of liquid assisting fs laser processing and AM. A water contact angle (WCA) of 150° is suggested so that a super hydrophobic surface is achieved. The scanning electron microscopy (SEM) images and X-ray photoelectron spectroscopy (XPS) analysis indicate that both hierarchical structures and higher carbon content in the laser processed area are responsible for the super hydrophobicity.

4.
Appl Opt ; 55(31): 8722-8726, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27828266

ABSTRACT

The local field enhancement in proximity of metallic nanostructures can strongly modify the excitation and emission behaviors for the nearby fluorophore. In this paper, Maxwell's time-dependent curl equations are solved by the finite-difference time-domain method to investigate the electric field enhancement around an atomic-force microscopy (AFM) tip and a Au nanosphere (NS). To lower the background fluorescence signal, we proposed to induce the fluorescence quenching by placing the emitter at an optimized position that is 2 nm away from the Au NS. The AFM tip is thereby moved to the vicinity of the emitter quenched by the Au NS. The fluorescence enhancement factor (FEF) increases rapidly when the tip approaches the Au NS. A maximum FEF of 1500-fold is obtained when their separation is 4 nm. By laterally scanning the tip over the Au NS at a constant height, the full width at half-maximum of fluorescence's signal peak with respect to tip position is around 20 nm. This high sensitivity of the FEF on the relative position of the tip and Au NS provides valuable information to guide future experiments on high-resolution optical imaging and fluorescence enhancement for high quantum yield emitters.

5.
Sci Rep ; 6: 31637, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27528093

ABSTRACT

Engineered microsphere possesses the advantage of strong light manipulation at sub-wavelength scale and emerges as a promising candidate to shrink the focal spot size. Here we demonstrated a center-covered engineered microsphere which can adjust the transverse component of the incident beam and achieve a sharp photonic nanojet. Modification of the beam width and working distance of the photonic nanojet were achieved by tuning the cover ratio of the engineered microsphere, leading to a sharp spot size which exceeded the optical diffraction limit. At a wavelength of 633 nm, a focal spot of 245 nm (0.387 λ) was achieved experimentally under plane wave illumination. Strong localized field with Bessel-like distribution was demonstrated by employing the linearly polarized beam and a center-covered mask being engineered on the microsphere.

SELECTION OF CITATIONS
SEARCH DETAIL
...