Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Image Process ; 32: 4237-4246, 2023.
Article in English | MEDLINE | ID: mdl-37440395

ABSTRACT

Salient object detection (SOD) aims to identify the most visually distinctive object(s) from each given image. Most recent progresses focus on either adding elaborative connections among different convolution blocks or introducing boundary-aware supervision to help achieve better segmentation, which is actually moving away from the essence of SOD, i.e., distinctiveness/salience. This paper goes back to the roots of SOD and investigates the principles of how to identify distinctive object(s) in a more effective and efficient way. Intuitively, the salience of one object should largely depend on its global context within the input image. Based on this, we devise a clean yet effective architecture for SOD, named Collaborative Content-Dependent Networks (CCD-Net). In detail, we propose a collaborative content-dependent head whose parameters are conditioned on the input image's global context information. Within the content-dependent head, a hand-crafted multi-scale (HMS) module and a self-induced (SI) module are carefully designed to collaboratively generate content-aware convolution kernels for prediction. Benefited from the content-dependent head, CCD-Net is capable of leveraging global context to detect distinctive object(s) while keeping a simple encoder-decoder design. Extensive experimental results demonstrate that our CCD-Net achieves state-of-the-art results on various benchmarks. Our architecture is simple and intuitive compared to previous solutions, resulting in competitive characteristics with respect to model complexity, operating efficiency, and segmentation accuracy.

2.
Food Chem ; 400: 133873, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36087477

ABSTRACT

To overcome the low production efficiency of Pickering emulsion stabilizers prepared from starch, alcohol precipitation and surface modification were applied in this study. Spherical starch nanoparticles (StNPs) (247.90 ± 1.96 nm) were prepared through nanoprecipitation. The StNPs were surface-esterified to produce starch nanoparticle acetate (StNPAc), and the physicochemical changes of the products were investigated. The contact angle (>89.56° ± 0.56°) of StNPAc (degree of substitution, 0.53) was maintained for over 30 min. The results showed that the hydrophobicity of the StNPs was improved by shielding the surface hydroxyl groups via acetylation. StNPAc was also used to produce emulsions for further evaluation of their feasibility as Pickering emulsifiers. Oil-in-water (3:7, v/v) emulsions containing 1.5 wt% StNPAc were stabilized for over 35 days without creaming. Thus, StNPAc exhibited better emulsifying capacity and storage stability than StNPs. Therefore, hydrophobic starch nanoparticles obtained by acetylation are promising stabilizers for surfactant-free Pickering emulsions.


Subject(s)
Nanoparticles , Starch , Acetates , Emulsions/chemistry , Excipients , Nanoparticles/chemistry , Particle Size , Starch/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...