Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 29(3): 035604, 2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29186010

ABSTRACT

We report on enhanced control of the growth of lateral GaAs nanowires (NWs) embedded in epitaxial (100) GaAsBi thin films enabled by the use of vicinal substrates and the growth-condition dependent role of Bi as a surfactant. Enhanced step-flow growth is achieved through the use of vicinal substrates and yields unidirectional nanowire growth. The addition of Bi during GaAsBi growth enhances Ga adatom diffusion anisotropy and modifies incorporation rates at steps in comparison to GaAs growth yielding lower density but longer NWs. The NWs grown on vicinal substrates grew unidirectionally towards the misorientation direction when Bi was present. The III/V flux ratio significantly impacts the size, shape and density of the resulting NWs. These results suggest that utilizing growth conditions which enhance step-flow growth enable enhanced control of lateral nanostructures.

2.
ACS Nano ; 8(3): 3031-41, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24575951

ABSTRACT

Metal nanoparticle (NP)-graphene multifunctional platforms are of great interest for exploring strong light-graphene interactions enhanced by plasmons and for improving performance of numerous applications, such as sensing and catalysis. These platforms can also be used to carry out fundamental studies on charge transfer, and the findings can lead to new strategies for doping graphene. There have been a large number of studies on noble metal Au-graphene and Ag-graphene platforms that have shown their potential for a number of applications. These studies have also highlighted some drawbacks that must be overcome to realize high performance. Here we demonstrate the promise of plasmonic gallium (Ga) nanoparticle (NP)-graphene hybrids as a means of modulating the graphene Fermi level, creating tunable localized surface plasmon resonances and, consequently, creating high-performance surface-enhanced Raman scattering (SERS) platforms. Four prominent peculiarities of Ga, differentiating it from the commonly used noble (gold and silver) metals are (1) the ability to create tunable (from the UV to the visible) plasmonic platforms, (2) its chemical stability leading to long-lifetime plasmonic platforms, (3) its ability to n-type dope graphene, and (4) its weak chemical interaction with graphene, which preserves the integrity of the graphene lattice. As a result of these factors, a Ga NP-enhanced graphene Raman intensity effect has been observed. To further elucidate the roles of the electromagnetic enhancement (or plasmonic) mechanism in relation to electron transfer, we compare graphene-on-Ga NP and Ga NP-on-graphene SERS platforms using the cationic dye rhodamine B, a drug model biomolecule, as the analyte.

3.
Small ; 8(17): 2721-30, 2012 Sep 10.
Article in English | MEDLINE | ID: mdl-22674808

ABSTRACT

Graphene is emerging as a promising material for plasmonics applications due to its strong light-matter interactions, most of which are theoretically predicted but not yet experimentally realized. Therefore, the integration of plasmonic nanoparticles to create metal nanoparticle/graphene composites enables numerous phenomena important for a range of applications from photonics to catalysis. For these applications it is important to articulate the coupling of photon-based excitations such as the interaction between plasmons in each of the material components, as well as their charge-based interactions dependent upon the energy alignment at the metal/graphene interface. These coupled phenomena underpin an active application area in graphene-based composites due to nanoparticle-dependent surface-enhanced Raman scattering (SERS) of graphene phonon modes. This study reveals the coupling of a graphene/SiC support with Ga-nanoparticle-localized surface plasmon resonance, which is of particular interest due to its ability to be tuned across the UV into the near-IR region. This work is the first demonstration of the evolving plasmon resonance on graphene during the synthesis of surface-supported metal nanoparticles, thus providing evidence for the theoretically predicted screening revealed by a damped resonance with little energy shift. Therefore, the role of the graphene/substrate heterojunction in tailoring the plasmon resonance for nanoplasmonic applications is shown. Additionally, the coupled phenomena between the graphene-Ga plasmon properties, charge transfer, and SERS of graphene vibrational modes are explored.

SELECTION OF CITATIONS
SEARCH DETAIL
...