Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 15(23): e202202039, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36398494

ABSTRACT

Invited for this month's cover is the group of Feng Li at the Ningxia University. The image shows how the coherent lattice heterojunction interface can play a role in the efficient separation of photogenerated carriers of ZnO-based photoanode for photoelectrochemical water splitting. The Research Article itself is available at 10.1002/cssc.202201469.

2.
ChemSusChem ; 15(23): e202201469, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36136368

ABSTRACT

Serious degradation and the short photogenerated carrier lifetime for the wide-bandgap semiconductor ZnO have become prominent issues that negatively affect photoelectrochemical (PEC) water splitting. Herein, a novel electron transport pathway was constructed by simple but effective coaxial growth of ZnO/ZnS/ZnIn2 S4 heterostructure nanoarrays to increase the carrier separation efficiency. This new photoanode fulfilled the requirements of both favorable band alignment and stability, achieving a stable photocurrent density of 1.146 mA cm-2 at 1.2 VRHE , which was approximately twice that of pristine ZnO. Detailed experimental studies revealed that the improved PEC activity was due to the lattice-matching interface coherency that activated the carrier transport pathway, giving rise to an optimized interfacial electronic structure for promoted charge separation by the built-in electric field and strengthened water oxidation activity. This design may provide a new approach to fabricating various efficient lattice-matching coherent interface photoanodes for PEC water splitting.

3.
Chemosphere ; 281: 130894, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34289603

ABSTRACT

Long-term storage of aerobic granular sludge (AGS) may lead to granule inactivation and disintegration. Granule recovery in both structure and activity is important for scale-up and stability of AGS, but information about the structure recovery of stored AGS is limited. In addition, whether short-term exogenous N-acyl-homoserine lactones (AHLs) regulations could accelerate the granule recovery and sustain positive effects on AGS is unknown. Herein, the recovery of 33-month stored AGS was performed in three reactors for 38 days (phase I) at different exogenous AHLs concentrations (0, 50 and 500 nM of AHL-mixtures in R0, R1 and R2, respectively) and for an extended 45 days without exogenous AHLs (phase II). Results demonstrated successful recovery of disintegrated AGS in all reactors, although it was relatively time-consuming in R0. The treatment performance was similar among the reactors and steady-state removal of COD (90%) and NH4+-N (94%) could be recovered within 7 and 21 days, respectively. However, exogenous AHLs regulation (especially in R1) obviously accelerated bioactivity recovery of heterotrophs and nitrifiers and improved granule characteristics, including biomass, density, hydrophobicity and extracellular polymeric substance (EPS). During phase II, sustainable positive effects remained in R1, but granule characteristics deteriorated in R2. The abundance of functional genera Thauera, Nitrosomonas and Candidatus_Nitrotoga, contributed to the rapid recovery and helped maintain the structure and activity of AGS. The predictive functional profiling of bacterial communities also demonstrated sustainably higher activities of metabolism, growth and signal sensing under exogenous AHLs regulation at an appropriate content.


Subject(s)
Acyl-Butyrolactones , Sewage , Bacteria , Bioreactors , Extracellular Polymeric Substance Matrix , Quorum Sensing
SELECTION OF CITATIONS
SEARCH DETAIL
...