Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ophthalmol Ther ; 13(4): 969-977, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38319552

ABSTRACT

INTRODUCTION: As a result of the insufficient ocular anatomical parameters used to customize implantable collamer lens (ICL), many patients still cannot achieve a suitable vault after ICL implantation surgery. This study analyzed the characteristics of a new anatomical parameter crystalline lens rise (CLR) in a population with high myopia and explored the influence of CLR on the vault after ICL implantation. METHODS: Patients (298 eyes) with high myopia who underwent ICL implantation were enrolled to study CLR characteristics. Postoperatively, patients (159 eyes) were divided into five groups according to the value of CLR (A, CLR ≤ - 150; B, - 150 < CLR ≤ 0; C, 0 < CLR < 150; D, 150 ≤ CLR < 300; E, CLR ≥ 300 µm), and to investigate the correlation between CLR and vault. RESULTS: In the 298 eyes, the CLR had a normal distribution (P = 0.35) and the mean CLR was 67.93 ± 150.66 µm. Ninety-nine eyes (33.22%) had a CLR ≤ 0 µm, of which 20 eyes (6.71%) had a CLR ≤ - 150 µm; 199 eyes (66.78%) had a CLR > 0 µm, of which 20 eyes (6.71%) had a CLR ≥ 300 µm. In 159 eyes, the CLR was negatively correlated with the vault at 1 day (R = - 0.497, P < 0.001), 3 months (R = - 0.505, P < 0.001), and 6 months (R = - 0.505, P < 0.001) postoperatively. At 6 months, the vault of group A was statistically significantly different compared to groups B-E (all P < 0.05), and that of group E was statistically significantly different compared to groups A-D (all P < 0.001). The remaining groups did not show statistically significant differences (all P > 0.05). CONCLUSION: The CLR had a normal distribution in the high myopia population, and 13.42% of the CLR values were extreme (CLR ≤ - 150 µm or CLR ≥ 300 µm). A larger ICL diameter than that recommended by the manufacturer should be considered when the CLR is ≥ 300 µm and a smaller ICL diameter should be considered when the CLR is ≤ - 150 µm.

2.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166708, 2023 08.
Article in English | MEDLINE | ID: mdl-37019244

ABSTRACT

BACKGROUND: Corneal neovascularization (CNV) can be caused by chemical burns. Macrophages are involved in angiogenesis and lymphangiogenesis during CNV. The aim of this study was to investigate whether Wilms' tumor 1-associated protein (WTAP) is involved in macrophage recruitment and VEGF secretion via N6-methyladenosine (m6A) modification. METHODS: A CNV mouse model was established by corneal alkali burn. Tumor necrosis factor alpha (TNF-α) was used to stimulate vascular endothelial cells. m6A immunoprecipitation qPCR was used to determine the enrichment of m6A levels in mRNAs. The H3K9me3 enrichment in the promoter region of CC motif chemokine ligand 2 (CCL2) was detected by chromatin immunoprecipitation assay. The WTAP inhibition in vivo was performed using the adeno-associated virus. RESULTS: In the alkali burn corneal tissues, angiogenesis and lymphangiogenesis were promoted as CD31 and LYVE-1 expressions were elevated, and the number of macrophages as well as WTAP expression were increased. Under the TNF-α stimulation, WTAP promoted the recruitment of endothelial cells to macrophages by promoting CCL2 secretion. Mechanistically, WTAP affected the enrichment of H3K9me3 at the CCL2 promoter by regulating the m6A level of SUV39H1 mRNA. The in vivo experiment showed that VEGFA/C/D secretion of macrophages was reduced after WTAP interference. Mechanistically, WTAP regulated the translational efficiency of HIF-1α via m6A modification. CONCLUSION: WTAP affected macrophage recruitment to endothelial cells via regulation of H3K9me3-mediated CCL2 transcription. WTAP also affected macrophage secretion of VEGFA/C/D via m6A-mediated translation regulation of HIF-1α. Both pathways were involved in the WTAP regulation of angiogenesis and lymphangiogenesis during CNV.


Subject(s)
Burns, Chemical , Corneal Neovascularization , Mice , Animals , Corneal Neovascularization/genetics , Corneal Neovascularization/metabolism , Corneal Neovascularization/pathology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Endothelial Cells/metabolism , Burns, Chemical/metabolism , Burns, Chemical/pathology , Macrophages/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...