Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Autophagy ; : 1-18, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38597182

ABSTRACT

Non-structural protein 2 (nsp2) exists in all coronaviruses (CoVs), while its primary function in viral pathogenicity, is largely unclear. One such enteric CoV, porcine epidemic diarrhea virus (PEDV), causes high mortality in neonatal piglets worldwide. To determine the biological role of nsp2, we generated a PEDV mutant containing a complete nsp2 deletion (rPEDV-Δnsp2) from a highly pathogenic strain by reverse genetics, showing that nsp2 was dispensable for PEDV infection, while its deficiency reduced viral replication in vitro. Intriguingly, rPEDV-Δnsp2 was entirely avirulent in vivo, with significantly increased productions of IFNB (interferon beta) and IFN-stimulated genes (ISGs) in various intestinal tissues of challenged newborn piglets. Notably, nsp2 targets and degrades TBK1 (TANK binding kinase 1), the critical kinase in the innate immune response. Mechanistically, nsp2 induced the macroautophagy/autophagy process and recruited a selective autophagic receptor, NBR1 (NBR1 autophagy cargo receptor). NBR1 subsequently facilitated the K48-linked ubiquitination of TBK1 and delivered it for autophagosome-mediated degradation. Accordingly, the replication of rPEDV-Δnsp2 CoV was restrained by reduced autophagy and excess productions of type I IFNs and ISGs. Our data collectively define enteric CoV nsp2 as a novel virulence determinant, propose a crucial role of nsp2 in diminishing innate antiviral immunity by targeting TBK1 for NBR1-mediated selective autophagy, and pave the way to develop a new type of nsp2-based attenuated PEDV vaccine. The study also provides new insights into the prevention and treatment of other pathogenic CoVs.Abbreviations: 3-MA: 3-methyladenine; Baf A1: bafilomycin A1; CoV: coronavirus; CQ: chloroquine; dpi: days post-inoculation; DMVs: double-membrane vesicles; GABARAP: GABA type A receptor-associated protein; GFP: green fluorescent protein; GIGYF2: GRB10 interacting GYF protein 2; hpi: hours post-infection; IFA: immunofluorescence assay; IFIH1: interferon induced with helicase C domain 1; IFIT2: interferon induced protein with tetratricopeptide repeats 2; IFITM1: interferon induced transmembrane protein 1; IFNB: interferon beta; IRF3: interferon regulatory factor 3; ISGs: interferon-stimulated genes; mAb: monoclonal antibody; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; NBR1: NBR1 autophagy cargo receptor; nsp2: non-structural protein 2; OAS1: 2'-5'-oligoadenylate synthetase 1; PEDV: porcine epidemic diarrhea virus; PRRs: pattern recognition receptors; RIGI: RNA sensor RIG-I; RT-qPCR: reverse transcription quantitative polymerase chain reaction; SQSTM1: sequestosome 1; TBK1: TANK binding kinase 1; TCID50: 50% tissue culture infectious doses; VSV: vesicular stomatitis virus.

2.
Polymers (Basel) ; 16(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38674997

ABSTRACT

In the present study, an environmentally friendly oil- and water-resistant paper was developed using a holo-lignocellulosic nanofibril (LCNF)-based composite coating. The LCNF was prepared from wheat straw using a biomechanical method. Characterizations of oil- and water-resistant coated paper and the effect of LCNF content on the performance of the coated paper were confirmed by combining contact angle analysis, Cobb 300s, and mechanical performance tests. The results show that the barrier performance and mechanical strength of the coated paper were greatly improved with the increase of LCNF content. The contact angle of oil and water of coated paper containing 50% LCNF were 69° and 78°, respectively, while the contact angle of oil and water of the base paper were only 30° and 20°, respectively. Cobb 300s values reduced from 110 g/m2 to 30 g/m2 when the LCNF content increased from 50% to 90%. Moreover, under the coating amount of 20 g/m2, the tensile strength of the coating paper was 0.980 KN/m, an increase of 10.11% compared with the base paper. The bursting strength reached 701.930 KPa, which was 10.75% higher than the base paper. In short, it is feasible to prepare LCNF from wheat straw, and apply it to produce water-proof and oil-proof paper. The water-proof and oil-proof paper developed in this study not only offers a novel approach to addressing white pollution but also presents a new research avenue for exploring the potential applications of agricultural waste.

3.
J Healthc Eng ; 2023: 1271606, 2023.
Article in English | MEDLINE | ID: mdl-37457496

ABSTRACT

Objective: To explore the effect of the overall nursing mode of responsibility system on the psychological state of elderly patients with limb fractures fixed by splints. Methods: This study selected 150 elderly patients who received emergency treatment of a limb fracture fixed by a traditional Chinese medicine splint in our hospital from May 2018 to June 2021 as the research subjects. They were divided into a control group and an observation group, with 75 cases in each group. The control group was intervened by traditional nursing mode, and the research group was intervened by responsible overall nursing mode. The quality of nursing work was observed and compared with the nursing staff's work quality and satisfaction, patients' psychological states and satisfaction, and the risk of clinical adverse events. Results: After management, the quality of nursing work in the two groups was significantly improved. Compared with before management, the scores of basic nursing measures, nursing of critical patients, ward environment management, disinfection and isolation, rescue drugs and instruments, and nursing document management in the observation group were significantly higher than those in the control group (P < 0.05). After management, the work quality and satisfaction of nurses in the two groups were significantly higher than those before management. The SERVQUAL scale score and satisfaction score in the observation group were significantly higher than those in the control group (P < 0.05). The scores of HAMA and HAMD in the observation group were significantly lower than those in the control group (P < 0.05). The overall satisfaction of nursing in the observation group was 96.00%, which was significantly higher than the 80.00% in the control group (P < 0.05). The incidence of adverse events in the observation group was 8.00%, which was significantly lower than 17.33% in the control group (P < 0.05). Conclusion: Giving elderly patients with limb fracture emergencies treated with splint fixation using traditional Chinese medicine the overall nursing mode management and responsibility system can give the elderly patients comprehensive and systematic clinical nursing, increase their trust and compliance with nursing work, improve the patient's psychological state, improve clinical satisfaction, and achieve the ideal doctor-patient relationship, which is worthy of clinical application.


Subject(s)
Fractures, Bone , Holistic Nursing , Aged , Humans , Splints , Physician-Patient Relations , Emergency Service, Hospital , Patient Compliance , Fractures, Bone/therapy
4.
J Biol Chem ; 299(5): 104668, 2023 05.
Article in English | MEDLINE | ID: mdl-37011862

ABSTRACT

Inhibition of heat shock protein 90 (Hsp90), a prominent molecular chaperone, effectively limits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection but little is known about any interaction between Hsp90 and SARS-CoV-2 proteins. Here, we systematically analyzed the effects of the chaperone isoforms Hsp90α and Hsp90ß on individual SARS-CoV-2 viral proteins. Five SARS-CoV-2 proteins, namely nucleocapsid (N), membrane (M), and accessory proteins Orf3, Orf7a, and Orf7b were found to be novel clients of Hsp90ß in particular. Pharmacological inhibition of Hsp90 with 17-DMAG results in N protein proteasome-dependent degradation. Hsp90 depletion-induced N protein degradation is independent of CHIP, a ubiquitin E3 ligase previously identified for Hsp90 client proteins, but alleviated by FBXO10, an E3 ligase identified by subsequent siRNA screening. We also provide evidence that Hsp90 depletion may suppress SARS-CoV-2 assembly partially through induced M or N degradation. Additionally, we found that GSDMD-mediated pyroptotic cell death triggered by SARS-CoV-2 was mitigated by inhibition of Hsp90. These findings collectively highlight a beneficial role for targeting of Hsp90 during SARS-CoV-2 infection, directly inhibiting virion production and reducing inflammatory injury by preventing the pyroptosis that contributes to severe SARS-CoV-2 disease.


Subject(s)
COVID-19 , HSP90 Heat-Shock Proteins , Pyroptosis , SARS-CoV-2 , Virion , Humans , COVID-19/pathology , COVID-19/physiopathology , COVID-19/virology , HSP90 Heat-Shock Proteins/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/growth & development , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Ubiquitin-Protein Ligases/metabolism , Virion/chemistry , Virion/growth & development , Virion/metabolism , Viral Proteins/metabolism
5.
Autophagy ; 18(8): 1969-1981, 2022 08.
Article in English | MEDLINE | ID: mdl-34964697

ABSTRACT

Senecavirus A (SVA), an important emerging porcine virus, has outbreaks in different regions and countries each year, becoming a virus with global prevalence. SVA infection has been reported to induce macroautophagy/autophagy; however, the molecular mechanisms of autophagy induction and the effect of SVA on autophagy remain unknown. This study showed that SVA infection induced the autophagy process in the early stage of SVA infection, and the rapamycin-induced autophagy inhibited SVA replication by degrading virus 3 C protein. To counteract this, SVA utilized 2AB protein inhibiting the autophagy process from promoting viral replication in the late stage of SVA infection. Further study showed that SVA 2AB protein interacted with MARCHF8/MARCH8 and LC3 to degrade the latter and inhibit the autophagy process. In addition, we found that MARCHF8 was a positive regulator of type I IFN (IFN-I) signaling. During the autophagy process, the SVA 2AB protein targeted MARCHF8 and MAVS forming a large complex for degradation to deactivate IFN-I signaling. Together, our study reveals the molecular mechanisms of selective autophagy in the host against viruses and reveals potential viral strategies to evade the autophagic process and IFN-I signaling for successful pathogenesis.Abbreviations: Baf A1: bafilomycin A1; Co-IP: co-immunoprecipitation; CQ: chloroquine; DAPI: 4',6-diamidino-2-phenylindole; hpi: hours post-infection; IFN: interferon; ISG: IFN-stimulated gene; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MARCHF8/MARCH8: membrane associated ring-CH-type finger 8; MAVS: mitochondrial antiviral signaling protein; MOI: multiplicity of infection; Rapa: rapamycin; RT: room temperature; siRNA: small interfering RNA; SVA: Senecavirus A; TCID50: 50% tissue culture infectious doses.


Subject(s)
Autophagy , Interferon Type I , Animals , Interferon Type I/metabolism , Macroautophagy , Picornaviridae , Sirolimus/pharmacology , Swine
6.
Microbiol Spectr ; 9(2): e0090821, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34612687

ABSTRACT

Emerging coronaviruses (CoVs) can cause severe diseases in humans and animals, and, as of yet, none of the currently available broad-spectrum drugs or vaccines can effectively control these diseases. Host antiviral proteins play an important role in inhibiting viral proliferation. One of the isoforms of cytoplasmic poly(A)-binding protein (PABP), PABPC4, is an RNA-processing protein, which plays an important role in promoting gene expression by enhancing translation and mRNA stability. However, its function in viruses remains poorly understood. Here, we report that the host protein, PABPC4, could be regulated by transcription factor SP1 and broadly inhibits the replication of CoVs, covering four genera (Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus) of the Coronaviridae family by targeting the nucleocapsid (N) protein through the autophagosomes for degradation. PABPC4 recruited the E3 ubiquitin ligase MARCH8/MARCHF8 to the N protein for ubiquitination. Ubiquitinated N protein was recognized by the cargo receptor NDP52/CALCOCO2, which delivered it to the autolysosomes for degradation, resulting in impaired viral proliferation. In addition to regulating gene expression, these data demonstrate a novel antiviral function of PABPC4, which broadly suppresses CoVs by degrading the N protein via the selective autophagy pathway. This study will shed light on the development of broad anticoronaviral therapies. IMPORTANCE Emerging coronaviruses (CoVs) can cause severe diseases in humans and animals, but none of the currently available drugs or vaccines can effectively control these diseases. During viral infection, the host will activate the interferon (IFN) signaling pathways and host restriction factors in maintaining the innate antiviral responses and suppressing viral replication. This study demonstrated that the host protein, PABPC4, interacts with the nucleocapsid (N) proteins from eight CoVs covering four genera (Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus) of the Coronaviridae family. PABPC4 could be regulated by SP1 and broadly inhibits the replication of CoVs by targeting the nucleocapsid (N) protein through the autophagosomes for degradation. This study significantly increases our understanding of the novel host restriction factor PABPC4 against CoV replication and will help develop novel antiviral strategies.


Subject(s)
Autophagy/physiology , Blood Proteins/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus/growth & development , Poly(A)-Binding Proteins/metabolism , Virus Replication/physiology , Animals , Cell Line , Chlorocebus aethiops , HEK293 Cells , Humans , Infectious bronchitis virus/growth & development , Murine hepatitis virus/growth & development , Nuclear Proteins/metabolism , Porcine epidemic diarrhea virus/growth & development , Proteolysis , Sp1 Transcription Factor/metabolism , Swine , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Vero Cells
7.
J Virol ; 95(19): e0064521, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34287043

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a globally distributed alphacoronavirus that has reemerged lately, resulting in large economic losses. During viral infection, type I interferon (IFN-I) plays a vital role in the antiviral innate immunity. However, PEDV has evolved strategies to limit IFN-I production. To suppress virus replication, the host must activate IFN-stimulated genes and some host restriction factors to circumvent viral replication. This study observed that PEDV infection induced early growth response gene 1 (EGR1) expression in PEDV-permissive cells. EGR1 overexpression remarkably suppressed PEDV replication. In contrast, depletion of EGR1 led to a significant increase in viral replication. EGR1 suppressed PEDV replication by directly binding to the IFN-regulated antiviral (IRAV) promoter and upregulating IRAV expression. A detailed analysis revealed that IRAV interacts and colocalizes with the PEDV nucleocapsid (N) protein, inducing N protein degradation via the E3 ubiquitin ligase MARCH8 to catalyze N protein ubiquitination. Knockdown of endogenous MARCH8 significantly reversed IRAV-mediated N protein degradation. The collective findings demonstrate a new mechanism of EGR1-mediated viral restriction, in which EGR1 upregulates the expression of IRAV to degrade PEDV N protein through MARCH8. IMPORTANCE PEDV is a highly contagious enteric coronavirus that has rapidly emerged worldwide and has caused severe economic losses. No currently available drugs or vaccines can effectively control PEDV. PEDV has evolved many strategies to limit IFN-I production. We identified EGR1 as a novel host restriction factor and demonstrated that EGR1 suppresses PEDV replication by directly binding to the IRAV promoter and upregulating the expression of IRAV, which interacts with and degrades the PEDV N protein via the E3 ubiquitin ligase MARCH8 to catalyze nucleocapsid protein ubiquitination, which adds another layer of complexity to the innate antiviral immunity of this newly identified restriction factor. A better understanding of the innate immune response to PEDV infection will aid the development of novel therapeutic targets and more effective vaccines against virus infection.


Subject(s)
Early Growth Response Protein 1/metabolism , Early Growth Response Protein 1/pharmacology , Nucleocapsid Proteins/metabolism , Porcine epidemic diarrhea virus/drug effects , RNA-Binding Proteins/metabolism , Virus Replication/drug effects , Animals , Antiviral Agents/metabolism , Chlorocebus aethiops , Coronavirus Infections , HEK293 Cells , Host-Pathogen Interactions , Humans , Immunity, Innate , Interferon Type I/metabolism , Nucleocapsid/metabolism , Porcine epidemic diarrhea virus/genetics , Swine , Swine Diseases/virology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Vero Cells
8.
Arch Virol ; 166(7): 1903-1911, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33900472

ABSTRACT

Tripartite motif protein 21 (TRIM21) is an E3 ubiquitin ligase and cytosolic antibody receptor of the TRIM family. Previous reports have indicated that TRIM21 plays an important role during viral infection. This study aimed at examining the role of TRIM21 in the replication of porcine epidemic diarrhea virus (PEDV) and showed that TRIM21 inhibits PEDV proliferation by targeting and degrading the nucleocapsid (N) protein through the proteasomal pathway. Furthermore, the endogenous expression of TRIM21 was found to be downregulated by PEDV infection in Vero and LLC-PK1 cells. Overexpression of TRIM21 inhibited PEDV replication, whereas knockdown of TRIM21 increased viral titers and N protein levels. TRIM21 was found to interact and colocalize with the N protein, and the TRIM21-mediated antiviral effect was dependent on its ubiquitin ligase activity, which engages in polyubiquitination and degradation of the N protein in a proteasome-dependent manner. Taken together, these findings provide information about the role of TRIM21 in PEDV proliferation and increase our understanding of host-virus interactions.


Subject(s)
Cell Proliferation/physiology , Coronavirus Infections/metabolism , Nucleocapsid Proteins/metabolism , Porcine epidemic diarrhea virus/metabolism , Proteasome Endopeptidase Complex/metabolism , Ribonucleoproteins/metabolism , Animals , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , Coronavirus Infections/virology , Down-Regulation/physiology , HEK293 Cells , HeLa Cells , Host Microbial Interactions/physiology , Humans , Proteolysis , Swine , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Vero Cells , Virus Replication/physiology
9.
Virol J ; 17(1): 46, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32245493

ABSTRACT

BACKGROUND: Porcine epidemic diarrhea virus (PEDV) infection causes an acute enteric tract infectious disease characterized by vomiting, anorexia, dehydration, weight loss and high mortality in neonatal piglets. During PEDV infection, the spike protein (S) is a major virion structural protein interacting with receptors and inducing neutralizing antibodies. However, the neutralizing B-cell epitopes within PEDV S protein have not been well studied. METHODS: To accurately identify the important immunodominant region of S1, the purified truncated S1 proteins (SA, SB, SC, SD and SE) were used to immunize BALB/c mice to prepare polyclonal antibodies. The antisera titers were determined by indirect ELISA, western blot and IFA after four immunizations to find the important immunodominant region of S1, and then purified the immunodominant region of S1 protein and immunized mice to generate the special antibodies, and then used recombinant peptides to determine the B-cell epitopes of monoclonal antibodies. RESULTS: Five antisera of recombinant proteins of the spike protein region of PEDV were generated and we found that only the polyclonal antibody against part of the S1 region (signed as SE protein, residues 666-789) could recognize the native PEDV. Purified SE protein was used to immunize BALB/c mice and generate mAb 2E10. Pepscan of the SE protein demonstrated that SE16 (722SSTFNSTREL731) is the minimal linear epitope required for reactivity with the mAb 2E10. Further investigation indicated that the epitope SE16 was localized on the surface of PEDV S protein in the 3D structure. CONCLUSIONS: A mAb 2E10 that is specifically bound to PEDV was generated and identified a specific linear B-cell epitope (SE16, 722SSTFNSTREL731) of the mAb. The epitope region of PEDV S1 localized in the different regions in comparison with the earlier identified epitopes. These findings enhance the understanding of the PEDV spike protein structure for vaccine design and provide a potential use for developing diagnostic methods to detect PEDV.


Subject(s)
Epitopes, B-Lymphocyte/immunology , Immunodominant Epitopes/immunology , Porcine epidemic diarrhea virus/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Chlorocebus aethiops , Female , Mice , Mice, Inbred BALB C , Porcine epidemic diarrhea virus/chemistry , Vero Cells
10.
Autophagy ; 16(10): 1737-1752, 2020 10.
Article in English | MEDLINE | ID: mdl-31868081

ABSTRACT

Interferon-induced BST2 (bone marrow stromal cell antigen 2) inhibits viral replication by tethering enveloped virions to the cell surface to restrict viral release and by inducing the NFKB-dependent antiviral immune response. However, the mechanism by which BST2 uses the selective autophagy pathway to inhibit viral replication is poorly understood. In this study, we showed that BST2 expression was significantly increased during porcine epidemic diarrhea virus (PEDV) infection of Vero cells by IRF1 targeting its promoter. We also showed that BST2 suppressed PEDV replication by binding and degrading the PEDV-encoded nucleocapsid (N) protein. The downregulation of N protein was blocked by macroautophagy/autophagy inhibitors but not a proteasome inhibitor, implying that the N protein was degraded via the selective autophagy pathway. Both the BST2 and N protein interacted with the E3 ubiquitin ligase MARCHF8/MARCH8 and the cargo receptor CALCOCO2/NDP52, and the ubiquitination of N protein was necessary for the degradation of N mediated by the BST2-MARCHF8 axis. The knockdown of MARCHF8 or ATG5 with small interfering RNAs blocked the selective autophagy pathway, rescued the protein abundance of PEDV N in 293T cells, and prevented the inhibition of PEDV replication by BST2 in Vero cells. Together, our data demonstrate the novel mechanism of BST2-mediated virus restriction, in which BST2 recruits MARCHF8 to catalyze the ubiquitination of the PEDV N protein. The ubiquitinated N protein is then recognized by CALCOCO2/NDP52, which delivers it to autolysosome for degradation through the selective autophagy pathway. Abbreviations: 3MA: 3-methyladenine; ATG: autophagy-related; Baf A1: bafilomycin A1; BST2: bone marrow stromal cell antigen 2; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CC: coiled-coil; ChIP: chromatin immunoprecipitation; Co-IP: co-immunoprecipitation; CQ: chloroquine; CT: cytoplasmic tail; DAPI: 4',6-diamidino-2-phenylindole; GPI: glycosyl-phosphatidylinositol; hpi: hours post infection; IRF1: interferon regulatory factor 1; ISG: IFN-stimulated gene; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MARCHF8/MARCH8: membrane-associated ring-CH-type finger 8; MOI: multiplicity of infection; N protein: nucleocapsid protein; PED: porcine epidemic diarrhea; PEDV: porcine epidemic diarrhea virus; RT: room temperature; siRNA: small interfering RNA; STAT: signal transducer and activator of transcription; TCID50: 50% tissue culture infectious doses; TM: transmembrane.


Subject(s)
Antigens, CD/genetics , Antigens, CD/physiology , Autophagy , Coronavirus Infections/virology , GPI-Linked Proteins/metabolism , Macroautophagy , Nucleocapsid Proteins/chemistry , Porcine epidemic diarrhea virus , Amino Acid Motifs , Animals , Chlorocebus aethiops , Chromatin Immunoprecipitation , Coronavirus Infections/metabolism , GPI-Linked Proteins/genetics , GPI-Linked Proteins/physiology , HEK293 Cells , Humans , Phagosomes , Signal Transduction/physiology , Ubiquitination , Up-Regulation , Vero Cells , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...