Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 547
Filter
1.
World J Gastrointest Surg ; 16(4): 1008-1016, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38690050

ABSTRACT

Helicobacter pylori (H. pylori) plays an important role in the development of gastric cancer, although its association to colorectal polyp (CP) or colorectal cancer (CRC) is unknown. In this issue of World Journal of Gastrointestinal Surgery, Zhang et al investigated the risk factors for H. pylori infection after colon polyp resection. Importantly, the researchers used R software to create a prediction model for H. pylori infection based on their findings. This editorial gives an overview of the association between H. pylori and CP/CRC, including the clinical significance of H. pylori as an independent risk factor for CP/CRC, the underlying processes of H. pylori-associated carcinogenesis, and the possible risk factors and identification of H. pylori.

2.
BMC Plant Biol ; 24(1): 380, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720246

ABSTRACT

BACKGROUND: Soybean (Glycine max), a vital grain and oilseed crop, serves as a primary source of plant protein and oil. Soil salinization poses a significant threat to soybean planting, highlighting the urgency to improve soybean resilience and adaptability to saline stress. Melatonin, recently identified as a key plant growth regulator, plays crucial roles in plant growth, development, and responses to environmental stress. However, the potential of melatonin to mitigate alkali stress in soybeans and the underlying mechanisms remain unclear. RESULTS: This study investigated the effects of exogenous melatonin on the soybean cultivar Zhonghuang 13 under alkaline stress. We employed physiological, biochemical, transcriptomic, and metabolomic analyses throughout both vegetative and pod-filling growth stages. Our findings demonstrate that melatonin significantly counteracts the detrimental effects of alkaline stress on soybean plants, promoting plant growth, photosynthesis, and antioxidant capacity. Transcriptomic analysis during both growth stages under alkaline stress, with and without melatonin treatment, identified 2,834 and 549 differentially expressed genes, respectively. These genes may play a vital role in regulating plant adaptation to abiotic stress. Notably, analysis of phytohormone biosynthesis pathways revealed altered expression of key genes, particularly in the ARF (auxin response factor), AUX/IAA (auxin/indole-3-acetic acid), and GH3 (Gretchen Hagen 3) families, during the early stress response. Metabolomic analysis during the pod-filling stage identified highly expressed metabolites responding to melatonin application, such as uteolin-7-O-(2''-O-rhamnosyl)rutinoside and Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside, which helped alleviate the damage caused by alkali stress. Furthermore, we identified 183 differentially expressed transcription factors, potentially playing a critical role in regulating plant adaptation to abiotic stress. Among these, the gene SoyZH13_04G073701 is particularly noteworthy as it regulates the key differentially expressed metabolite, the terpene metabolite Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside. WGCNA analysis identified this gene (SoyZH13_04G073701) as a hub gene, positively regulating the crucial differentially expressed metabolite of terpenoids, Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside. Our findings provide novel insights into how exogenous melatonin alleviates alkali stress in soybeans at different reproductive stages. CONCLUSIONS: Integrating transcriptomic and metabolomic approaches, our study elucidates the mechanisms by which exogenous melatonin ameliorates the inhibitory effects of alkaline stress on soybean growth and development. This occurs through modulation of biosynthesis pathways for key compounds, including terpenes, flavonoids, and phenolics. Our findings provide initial mechanistic insights into how melatonin mitigates alkaline stress in soybeans, offering a foundation for molecular breeding strategies to enhance salt-alkali tolerance in this crop.


Subject(s)
Glycine max , Melatonin , Stress, Physiological , Transcriptome , Melatonin/pharmacology , Glycine max/genetics , Glycine max/drug effects , Glycine max/growth & development , Glycine max/metabolism , Stress, Physiological/drug effects , Stress, Physiological/genetics , Transcriptome/drug effects , Gene Expression Regulation, Plant/drug effects , Metabolomics , Gene Expression Profiling , Alkalies , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Metabolome/drug effects
3.
Clin Transl Med ; 14(5): e1699, 2024 May.
Article in English | MEDLINE | ID: mdl-38783408

ABSTRACT

BACKGROUND: The gut is an important site for human immunodeficiency virus (HIV) infection and immune responses. The role of gut mucosal immune cells in immune restoration in patients infected with HIV undergoing antiretroviral therapy remains unclear. METHODS: Ileocytes, including 54 475 immune cells, were obtained from colonoscopic biopsies of five HIV-negative controls, nine immunological responders (IRs), and three immunological non-responders (INRs) and were analyzed using single-cell RNA sequencing. Immunohistochemical assays were performed for validation. The 16S rRNA gene was amplified using PCR in faecal samples to analyze faecal microbiota. Flow cytometry was used to analyze CD4+ T-cell counts and the activation of T cells. RESULTS: This study presents a global transcriptomic profile of the gut mucosal immune cells in patients infected with HIV. Compared with the IRs, the INRs exhibited a lower proportion of gut plasma cells, especially the IGKC+IgA+ plasma cell subpopulation. IGKC+IgA+ plasma cells were negatively associated with enriched f. Prevotellaceae the INRs and negatively correlated with the overactivation of T cells, but they were positively correlated with CD4+ T-cell counts. The INRs exhibited a higher proportion of B cells than the IRs. Follicular and memory B cells were significantly higher in the INRs. Reduced potential was observed in the differentiation of follicular or memory B cells into gut plasma cells in INRs. In addition, the receptor-ligand pairs CD74_MIF and CD74_COPA of memory B/ follicular helper T cells were significantly reduced in the INRs, which may hinder the differentiation of memory and follicular B cells into plasma cells. CONCLUSIONS: Our study shows that plasma cells are dysregulated in INRs and provides an extensive resource for deciphering the immune pathogenesis of HIV in INRs. KEY POINTS: An investigation was carried out at the single-cell-level to analyze gut mucosal immune cells alterations in PLWH after ART. B cells were significantly increased and plasma cells were significantly decreased in the INRs compared to the IRs and NCs. There are gaps in the transition from gut follicular or memory B cellsinto plasma cells in INRs.


Subject(s)
HIV Infections , Intestinal Mucosa , Plasma Cells , Humans , HIV Infections/immunology , HIV Infections/drug therapy , Male , Plasma Cells/immunology , Intestinal Mucosa/immunology , Female , Adult , Middle Aged , Memory B Cells/immunology , B-Lymphocytes/immunology
4.
Heliyon ; 10(10): e31307, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38803884

ABSTRACT

Objectives: N7-methylguanosine (m7G) plays a crucial role in mRNA metabolism and other biological processes. However, its regulators' function in Primary Sjögren's Syndrome (PSS) remains enigmatic. Methods: We screened five key m7G-related genes across multiple datasets, leveraging statistical and machine learning computations. Based on these genes, we developed a prediction model employing the extreme gradient boosting decision tree (XGBoost) method to assess PSS risk. Immune infiltration in PSS samples was analyzed using the ssGSEA method, revealing the immune landscape of PSS patients. Results: The XGBoost model exhibited high accuracy, AUC, sensitivity, and specificity in both training, test sets and extra-test set. The decision curve confirmed its clinical utility. Our findings suggest that m7G methylation might contribute to PSS pathogenesis through immune modulation. Conclusions: m7G regulators play an important role in the development of PSS. Our study of m7G-realted genes may inform future immunotherapy strategies for PSS.

5.
World J Gastrointest Surg ; 16(5): 1218-1222, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38817279

ABSTRACT

In this editorial we comment on the article by Emara et al published in the recent issue of the World Journal of Gastrointestinal Surgery. Previously, surgery was the primary treatment for bile duct injuries (BDI). The treatment of BDI has advanced due to technological breakthroughs and minimally invasive procedures. Endoscopic and percutaneous treatments have largely supplanted surgery as the primary treatment for most instances in recent years. Patient management, including the specific technique, is typically impacted by local knowledge and the kind and severity of the injury. Endoscopic therapy is a highly successful treatment for postoperative benign bile duct stenosis and offers superior long-term outcomes compared to surgical correction. Based on the damage features of BDI, therapeutic options include endoscopic duodenal papillary sphincterotomy, endoscopic nasobiliary drainage, and endoscopic biliary stent implantation.

6.
J Hazard Mater ; 473: 134584, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38761762

ABSTRACT

Effective capture and immobilization of volatile radioiodine from the off-gas of post-treatment plants is crucial for nuclear safety and public health, considering its long half-life, high toxicity, and environmental mobility. Herein, sulfur vacancy-rich Vs-Bi2S3@C nanocomposites were systematically synthesized via a one-step solvothermal vulcanization of CAU-17 precursor. Batch adsorption experiments demonstrated that the as-synthesized materials exhibited superior iodine adsorption capacity (1505.8 mg g-1 at 200 °C), fast equilibrium time (60 min), and high chemisorption ratio (91.7%), which might benefit from the nanowire structure and abundant sulfur vacancies of Bi2S3. Furthermore, Vs-Bi2S3@C composites exhibited excellent iodine capture performance in complex environments (high temperatures, high humidity and radiation exposure). Mechanistic investigations revealed that the I2 capture by fabricated materials primarily involved the chemical adsorption between Bi2S3 and I2 to form BiI3, and the interaction of I2 with electrons provided by sulfur vacancies to form polyiodide anions (I3-). The post-adsorbed iodine samples were successfully immobilized into commercial glass fractions in a stable form (BixOyI), exhibiting a normalized iodine leaching rate of 3.81 × 10-5 g m-2 d-1. Overall, our work offers a novel strategy for the design of adsorbent materials tailed for efficient capture and immobilization of volatile radioiodine.

7.
ACS Omega ; 9(20): 21838-21850, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38799363

ABSTRACT

Maternal separation (MS) represents a profound early life stressor with enduring impacts on neuronal development and adult cognitive function in both humans and rodents. MS is associated with persistent dysregulations in neurotransmitter systems, including the serotonin (5-HT) pathway, which is pivotal for mood stabilization and stress-coping mechanisms. Although the novel cannabinoid receptor, GPR55, is recognized for its influence on learning and memory, its implications on the function and synaptic dynamics of 5-HT neurons within the dorsal raphe nucleus (DRN) remain to be elucidated. In this study, we sought to discern the repercussions of GPR55 activation on 5-HT synthesis within the DRN of adult C57BL/6J mice that experienced MS. Concurrently, we analyzed potential alterations in excitatory synaptic transmission, long-term synaptic plasticity, and relevant learning and memory outcomes. Our behavioral assessments indicated a marked amelioration in MS-induced learning and memory deficits following GPR55 activation. In conjunction with this, we noted a substantial decrease in 5-HT levels in the MS model, while GPR55 activation stimulated tryptophan hydroxylase 2 synthesis and fostered the release of 5-HT. Electrophysiological patch-clamp analyses highlighted the ability of GPR55 activation to alleviate MS-induced cognitive deficits by modulating the frequency and magnitude of miniature excitatory postsynaptic currents within the DRN. Notably, this cognitive enhancement was underpinned by the phosphorylation of both NMDA and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. In summary, our findings underscore the capacity of GPR55 to elevate 5-HT synthesis and modify synaptic transmissions within the DRN of juvenile mice, positing GPR55 as a promising therapeutic avenue for ameliorating MS-induced cognitive impairment.

8.
Food Chem ; 450: 139331, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38621310

ABSTRACT

The sensitive detection of foodborne pathogenic and rapid antibiotic susceptibility testing (AST) is of great significance. This paper reports the enzyme-triggered in situ synthesis of yellow emitting silicon nanoparticles (SiNPs) and the detection of Escherichia coli (E. coli) O157:H7 in food samples and the rapid AST. The rapid counting of E. coli O157:H7 has been achieved through direct visual observation, equipment detection, and smartphone digitalization. A simple detection platform based on smartphone senses and cotton swabs has been established. Meanwhile, rapid AST based on enzyme-catalyzed SiNPs can intuitively obtain colorimetric samples. This paper established a system for bacterial enzyme-triggered in situ synthesis of SiNPs, with high responsiveness, luminescence ratio, and specificity. The detection limit for E. coli O157:H7 can reach 100 CFU/mL during 5 h, and the recovery efficiency ranges from 90.14% to 110.16%, which makes it a promising strategy for the rapid detection of E. coli O157:H7 and AST.


Subject(s)
Escherichia coli O157 , Nanoparticles , Silicon , beta-Galactosidase , Escherichia coli O157/drug effects , Escherichia coli O157/isolation & purification , Nanoparticles/chemistry , Silicon/chemistry , Silicon/pharmacology , beta-Galactosidase/metabolism , beta-Galactosidase/chemistry , Microbial Sensitivity Tests , Food Contamination/analysis , Colorimetry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Food Microbiology
9.
Angew Chem Int Ed Engl ; 63(23): e202405428, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38563631

ABSTRACT

The extensively studied Prussian blue analogs (PBAs) in various batteries are limited by their low discharge capacity, or subpar rate etc., which are solely reliant on the cation (de)intercalation mechanism. In contrast to the currently predominant focus on cations, we report the overlooked anion-cation competition chemistry (Cl-, K+, Zn2+) stimulated by high-voltage scanning. With our designed anion-cation combinations, the KFeMnHCF cathode battery delivers comprehensively superior discharge performance, including voltage plateau >2.0 V (vs. Zn/Zn2+), capacity >150 mAh g-1, rate capability with capacity maintenance above 96 % from 0.6 to 5 A g-1, and cyclic stability exceeding 3000 cycles. We further verify that such comprehensive improvement of electrochemical performance utilizing anion-cation competition chemistry is universal for different types of PBAs. Our work would pave a new and efficient road towards the next-generation high-performance PBAs cathode batteries.

10.
Mikrochim Acta ; 191(4): 213, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38512701

ABSTRACT

Strontium-90 (90Sr) is a major radioactive component that has attracted great attention, but its detection remains challenging since there are no specific energy rays indicative of its presence. Herein, a biosensor that is capable of rapidly detecting Sr2+ ions is demonstrated. Simple colorimetric method for sensitive detection of Sr2+ with the help of single-stranded DNA was developed by preparing MnO2 nanorods as oxidase mimic catalysis 3,3',5,5'-tetramethylbenzidine (TMB). Under weakly acidic conditions, MnO2 exhibited a strong oxidase-mimicking activity to oxidize colorless TMB into blue oxidation products (oxTMB) with discernible absorbance signals. Nevertheless, the introduction of a guanine-rich DNA aptamer inhibited MnO2-mediated TMB oxidation and reduced oxTMB formation, resulting in blue fading and diminished absorbance. Upon the addition of strontium ions to the system, the aptamers formed a stable G-quadruplex structure with strontium ions, thereby restoring the oxidase-mimicking activity of MnO2. Under the best experimental conditions, the absorbance exhibits a linear relationship with the Sr2+ concentration within the range 0.01-200 µM, with a limit of detection of 0.0028 µM. When the concentration of Sr2+ from 10-8 to 10-6 mol L-1, a distinct color change gradient could be observed in paper-based sensor. We successfully applied this approach to determine Sr2+ in natural water samples, obtaining recoveries ranging from 97.6 to 103% with a relative standard deviation of less than 5%. By providing technical solutions for detection, our work contributed to the effective monitoring of transportation of radioactive Sr in the environment.


Subject(s)
Biosensing Techniques , G-Quadruplexes , Nanotubes , Oxidoreductases/chemistry , Oxides/chemistry , Colorimetry/methods , Manganese Compounds/chemistry , Strontium , DNA , Biosensing Techniques/methods
11.
Front Nutr ; 11: 1276497, 2024.
Article in English | MEDLINE | ID: mdl-38501068

ABSTRACT

Background: Cholelithiasis, commonly referred to as gallstones, is a prevalent medical condition influenced by a combination of genetic factors, lifestyle choices, and dietary habits. Specific food items have been associated with an increased susceptibility to cholelithiasis, whereas others seem to offer a protective effect against its development. Methods: In this study, we conducted a Mendelian randomization (MR) analysis using a large-scale genetic dataset comprising individuals with European ancestry to explore the potential causal relationship between diet and cholelithiasis. The analysis incorporated 17 food-related variables, which were considered as potential factors influencing the occurrence of this condition. Results: Our findings indicate that a higher consumption of cooked vegetables, dried fruit, and oily fish is associated with a reduced risk of cholelithiasis. Conversely, a higher consumption of lamb is associated with an increased risk of developing the condition. Importantly, these associations proved robust to sensitivity and heterogeneity tests, and the pleiotropic test results further supported the hypothesis of a causal relationship between diet and cholelithiasis. Conclusion: Through our study, we provide compelling evidence for the existence of a causal relationship between diet and cholelithiasis. Adopting a dietary pattern enriched with cooked vegetables, dried fruit, and oily fish, while minimizing lamb intake, may contribute to the prevention of cholelithiasis. Recognizing diet as a modifiable risk factor in the prevention and management of this condition is of paramount importance, and our study offers valuable insights in this regard.

12.
Foods ; 13(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38472926

ABSTRACT

Cordycepin production in the submerged culture of Cordyceps militaris was demonstrated using hydrolyzed corn processing protein by-products, known as corn steep liquor hydrolysate (CSLH), as an alternative nitrogen source. The growth, metabolism, and cordycepin production of Cordyceps militaris were evaluated under various concentrations of CSLH induction. The results demonstrated that CSLH addition had positive effects on the growth and cordycepin production with various C. militaris strains. The optimum strain, C. militaris GDMCC5.270, was found to effectively utilize CSLH to promote mycelium growth and cordycepin production. Low concentrations of CSLH (1.5 g/L) in the fermentation broth resulted in 343.03 ± 15.94 mg/L cordycepin production, which was 4.83 times higher than that of the group without CSLH. This also enhanced the metabolism of sugar, amino acids, and nucleotides, leading to improved cordycepin biosynthesis. The increase in key amino acids, such as glutamic acid, alanine, and aspartic acid, in the corn steep liquor hydrolysate significantly enhanced cordycepin yield. The corn steep liquor hydrolysate was confirmed to be a cost-effective accelerator for mycelium growth and cordycepin accumulation in C. militaris, replacing partial peptone as a cheap nitrogen source. It serves as a suitable alternative for efficient cordycepin production at a low cost.

13.
World J Gastrointest Surg ; 16(2): 276-283, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38463349

ABSTRACT

In this editorial we comment on an article published in a recent issue of the World J Gastrointest Surg. A common gene mutation in gastric cancer (GC) is the TP53 mutation. As a tumor suppressor gene, TP53 is implicated in more than half of all tumor occurrences. TP53 gene mutations in GC tissue may be related with clinical pathological aspects. The TP53 mutation arose late in the progression of GC and aided in the final switch to malignancy. CDH1 encodes E-cadherin, which is involved in cell-to-cell adhesion, epithelial structure maintenance, cell polarity, differentiation, and intracellular signaling pathway modulation. CDH1 mutations and functional loss can result in diffuse GC, and CDH1 mutations can serve as independent prognostic indicators for poor prognosis. GC patients can benefit from genetic counseling and testing for CDH1 mutations. Demethylation therapy may assist to postpone the onset and progression of GC. The investigation of TP53 and CDH1 gene mutations in GC allows for the investigation of the relationship between these two gene mutations, as well as providing some basis for evaluating the prognosis of GC patients.

14.
World J Gastrointest Surg ; 16(2): 284-288, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38463359

ABSTRACT

This editorial discusses the article written by Zheng et al that was published in the latest edition of the World Journal of Gastrointestinal Surgery. Our primary focus is on the causes, location, diagnosis, histological classification, and therapy of ectopic pancreas. Ectopic pancreas refers to the presence of pancreatic tissue that is situated in a location outside its usual anatomical placement, and is not connected to the normal pancreas in terms of blood supply or anatomical structure. Currently, the embryological origin of ectopic pancreas remains uncertain. The most prevalent form of ectopic pancreatic is gastric ectopic pancreas. Endoscopic ultrasonography examination can visualize the morphological characteristics of the ectopic pancreatic lesion and pinpoint its anatomical location. The histological categorization of ectopic pancreas evolves. Endoscopic treatment has been widely advocated in ectopic pancreas.

15.
Anal Chim Acta ; 1297: 342359, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38438236

ABSTRACT

BACKGROUND: Microemulsion electrokinetic chromatography (MEEKC) is a mode of capillary electrophoresis with a wide range of applications in which microemulsion is utilized as background electrolyte to achieve the separation of analytes. Microemulsions are composed of oil droplets, aqueous buffer, surfactant, and co-surfactant. Currently, conventional organic reagents act as the most commonly used oil phase in microemulsions, which are unfriendly to the environment. Recently, deep eutectic solvent (DES) has become a new type of eco-friendly solvent due to its non-toxicity. Therefore, it is of great value to establish a new MEEKC method by replacing conventional organic reagents as the oil phase with DES. RESULTS: The novel DES/W MEEKC method was established for phenolic compounds in Senecio scandens samples. Single-factor experiments and response surface methodology were performed to systematically optimize the crucial parameters for the method, including the type and content of the oil phase, surfactant content, concentration of borax buffer, and pH of the background solution. Under the optimized conditions, satisfactory regression curves were established for all standard analytes with correlation coefficients ≥0.9990. The method featured high sensitivity and favorable accuracy, with the instrumental detection limit in the range of 0.22-1.04 µg/mL, and intraday and interday precision for migration time expressed as relative standard deviations of 0.18-0.82% and 1.25-2.50%, respectively. The DES/W MEEKC method was successfully applied to Senecio scandens with good recoveries of 87.72-106.99%. In conclusion, the newly established DES/W MEEKC method is highly efficient, green and environmentally friendly. SIGNIFICANCE: DES is considered a green and efficient solvent. The DES/W MEEKC method is highly efficient and environmentally friendly. Actually, the method provides a novel and effective analytical tool for the simultaneous separation and determination of multiple phenolic compounds, especially in complex plant matrices. In the future, the DES/W MEEKC method still has the prospect of being widely used in the separation of other complex phytochemicals.

16.
Nat Commun ; 15(1): 1095, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321031

ABSTRACT

Electrochemical synthesis is a promising way for sustainable urea production, yet the exact mechanism has not been fully revealed. Herein, we explore the mechanism of electrochemical coupling of nitrite and carbon dioxide on Cu surfaces towards urea synthesis on the basis of a constant-potential method combined with an implicit solvent model. The working electrode potential, which has normally overlooked, is found influential on both the reaction mechanism and activity. The further computational study on the reaction pathways reveals that *CO-NH and *NH-CO-NH as the key intermediates. In addition, through the analysis of turnover frequencies under various potentials, pressures, and temperatures within a microkinetic model, we demonstrate that the activity increases with temperature, and the Cu(100) shows the highest efficiency towards urea synthesis among all three Cu surfaces. The electric double-layer capacitance also plays a key role in urea synthesis. Based on these findings, we propose two essential strategies to promote the efficiency of urea synthesis on Cu electrodes: increasing Cu(100) surface ratio and elevating the reaction temperature.

17.
Technol Health Care ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339944

ABSTRACT

BACKGROUND: Endometrial receptivity is crucial for the establishment of a healthy pregnancy outcome. Previous research on endometrial receptivity primarily examined endometrial thickness, endometrial echo types, and endometrial blood supply. OBJECTIVE: To explore the differences in the elastic modulus of the endometrium in women with various pregnancy outcomes by real-time shear wave elastography (SWE) and to investigate its application value in evaluation of endometrial receptivity. METHODS: A total of 205 pregnant women who were admitted at Wenzhou People's Hospital between January 2021 and December 2022 were selected. Three-dimensional transvaginal sonography and real-time shear wave elastography were performed in the proliferative phase and receptive phase of the endometrium, and the average elastic modulus of the endometrium in the two phases was obtained and compared. According to whether the pregnancy was successful or not, the participants were divided into the pregnancy group (n= 72) and non-pregnancy group (n= 133), and the differences in intimal thickness, 3D blood flow parameters, and average elastic modulus of intima were compared between the two groups. RESULTS: The average elastic modulus of the endometrium in the proliferative phase and receptive phase was (23.92 ± 2.31) kPa and (11.82 ± 2.24) kPa, respectively, and the difference was statistically significant P< 0.05. The average elastic modulus of the endometrium in the pregnancy group and non-pregnancy group was (9.97 ± 1.08) kPa and (12.82 ± 2.06) kPa, respectively, and the difference was statistically significant P< 0.05. The area under the curve of predicting pregnancy by the average elastic modulus of the endometrium in the receptive phase was 0.888 (0.841∼0.934), with corresponding P value < 0.05. The critical value was 11.15, with a corresponding sensitivity of 81.7% and specificity of 78.2%. CONCLUSION: Real-time shear wave elastography can quantitatively evaluate endometrial elasticity, indirectly reflect the endometrial phase, and provide a new diagnostic concept for evaluating endometrial receptivity and predicting pregnancy outcome in infertile patients.

18.
J Pharm Biomed Anal ; 242: 116040, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38387129

ABSTRACT

The chemical and biologically active characterization of jujube samples (fruits, cores, and leaves) were carried out by the integrated nontargeted metabolomics and bioassay. Firstly, collision cross-section values of active compounds in jujubes were determined by ultrahigh-performance liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry. Then, a multidimensional statistical analysis that contained principal component analysis, partial least squares-discriminant analysis and hierarchical clustering analysis was employed to effectively cluster different tissues and types of jujubes, making identification more scientific. Furthermore, angiotensin-converting enzyme (ACE) and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) were used to evaluate the quality of jujubes from a double activity dimension. The analytical results obtained by using ACE and DPPH to evaluate the quality of jujube were different from multivariate statistics, providing a reference for the application of jujube. Therefore, integrating chemical and biological perspectives to evaluate the quality of jujube provided a more comprehensive evaluation and effective reference for clinical needs.


Subject(s)
Antioxidants , Biphenyl Compounds , Ziziphus , Antioxidants/pharmacology , Antioxidants/analysis , Ziziphus/chemistry , Plant Extracts/chemistry , Chromatography, High Pressure Liquid , Chromatography, Liquid , Fruit/chemistry
19.
Cell Transplant ; 33: 9636897241226847, 2024.
Article in English | MEDLINE | ID: mdl-38288604

ABSTRACT

Ischemic wounds are chronic wounds with poor blood supply that delays wound reconstruction. To accelerate wound healing and promote angiogenesis, adipose-derived stem cells (ADSCs) are ideal seed cells for stem cell-based therapies. Nevertheless, providing a favorable environment for cell proliferation and metabolism poses a substantial challenge. A highly sulfated heparin-like polysaccharide 2-N, 6-O-sulfated chitosan (26SCS)-doped poly(lactic-co-glycolic acid) scaffold (S-PLGA) can be used due to their biocompatibility, mechanical properties, and coagent 26SCS high affinity for growth factors. In this study, a nano-scaffold system, constructed from ADSCs seeded on electrospun fibers of modified PLGA, was designed to promote ischemic wound healing. The S-PLGA nanofiber membrane loaded with adipose stem cells ADSCs@S-PLGA was prepared by a co-culture in vitro, and the adhesion and compatibility of cells on the nano-scaffolds were explored. Scanning electron microscopy was used to observe the growth state and morphological changes of ADSCs after co-culture with PLGA electrospun fibers. The proliferation and apoptosis after co-culture were detected using a Cell Counting Kit-8 kit and flow cytometry, respectively. An ischemic wound model was then established, and we further studied the ability of ADSCs@S-PLGA to promote wound healing and angiogenesis. We successfully established ischemic wounds on the backs of rats and demonstrated that electrospun fibers combined with the biological effects of adipose stem cells effectively promoted wound healing and the growth of microvessels around the ischemic wounds. Phased research results can provide a theoretical and experimental basis for a new method for promoting clinical ischemic wound healing.


Subject(s)
Chitosan , Nanofibers , Rats , Animals , Chitosan/pharmacology , Tissue Scaffolds , Sulfates/pharmacology , Wound Healing , Stem Cells
20.
BMC Plant Biol ; 24(1): 29, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38172651

ABSTRACT

BACKGROUND: Fusarium crown rot (FCR) is one of the most significant diseases limiting crop production in the Huanghuai wheat-growing region of China. Prothioconazole, a triazole sterol 14α-demethylation inhibitor (DMI) fungicide developed by the Bayer Crop Protection Company, is mainly registered for the prevention and control of wheat powdery mildew and stripe rust (China Pesticide Information Network). It is known to exhibit high activity against F. pseudograminearum, but further research, particularly regarding the potential for fungicide resistance, is required before it can be registered for the control of FCR in China. RESULTS: The current study found that the baseline sensitivity of 67 field isolates of F. pseudograminearum collected between 2019 and 2021 ranged between 0.016-2.974 µg/mL, with an average EC50 value of 1.191 ± 0.720 µg/mL (mean ± SD). Although none of the field isolates exhibited signs of resistance, three highly resistant mutants were produced by repeated exposure to prothioconazole under laboratory conditions. All of the mutants were found to exhibit significantly reduced growth rates on potato dextrose agar (PDA), as well as reduced levels of sporulation, which indicated that there was a fitness cost associated with the resistance. However, inoculation of wounded wheat coleoptiles revealed that the pathogenicity of the resistant mutants was little affected or actually increased. Molecular analysis of the genes corresponding to the prothioconazole target protein, FpCYP51 (FpCYP51A, FpCYP51B, and FpCYP51C), indicated that the resistant mutants contained three conserved substitutions (M63I, A205S, and I246V) that were present in the FpCYP51C sequence of all three mutants, as well as several non-conserved substations in their FpCYP51A and FpCYP51B sequences. Expression analysis revealed that the presence of prothioconazole (0.1 µg/mL) generally resulted in reduced expression of the three FpCYP51 genes, but that the three mutants exhibited more complex patterns of expression that differed in comparison to their parental isolates. The study found no evidence of cross-resistance between prothioconazole and any of the fungicides tested including three DMI fungicides tebuconazole, prochloraz, and flutriafol. CONCLUSIONS: Taken together these results not only provide new insight into the resistant mechanism and biological characteristics associated with prothioconazole resistance in F. pseudograminearum, but also strong evidence that prothioconazole could provide effective and sustained control of FCR, especially when applied in combination with other fungicides.


Subject(s)
Fungicides, Industrial , Fusarium , Fungicides, Industrial/pharmacology , Triazoles/pharmacology , China , Plant Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...