Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(12): 20682-20694, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38859444

ABSTRACT

Fiber-bundle-based endoscopy, with its ultrathin probe and micrometer-level resolution, has become a widely adopted imaging modality for in vivo imaging. However, the fiber bundles introduce a significant honeycomb effect, primarily due to the multi-core structure and crosstalk of adjacent fiber cores, which superposes the honeycomb pattern image on the original image. To tackle this issue, we propose an iterative-free spatial pixel shifting (SPS) algorithm, designed to suppress the honeycomb effect and enhance real-time imaging performance. The process involves the creation of three additional sub-images by shifting the original image by one pixel at 0, 45, and 90 degree angles. These four sub-images are then used to compute differential maps in the x and y directions. By performing spiral integration on these differential maps, we reconstruct a honeycomb-free image with improved details. Our simulations and experimental results, conducted on a self-built fiber bundle-based endoscopy system, demonstrate the effectiveness of the SPS algorithm. SPS significantly improves the image quality of reflective objects and unlabeled transparent scattered objects, laying a solid foundation for biomedical endoscopic applications.

2.
Toxicology ; 485: 153426, 2023 02.
Article in English | MEDLINE | ID: mdl-36639017

ABSTRACT

Doxorubicin (DOX) is frequently used in clinical practice for its broad-spectrum effects. However, its benefit is limited by a series of complications, including excessive apoptosis and autophagy of cardiomyocytes, overproduction of reactive oxygen species (ROS) and high level of oxidative stress. As a new protein, OTU domain-containing 7B (OTUD7B), also called Cezanne, has been reported to regulate many pathological processes. However, whether it plays a role in DOX-induced cardiotoxicity is still unclear. We discovered that the Cezanne level was significantly increased in DOX-treated neonatal rat cardiomyocytes (NRCMs) and C57BL/6 J mice hearts. In vitro, the knockdown of Cezanne with adenovirus in NRCMs significantly worsened DOX-induced apoptosis, autophagy and oxidative stress, while Cezanne overexpression showed opposite results. In vivo, the overexpression of Cezanne using cardiomyocyte-targeted adeno-associated virus 9 (AAV9) significantly reduced cardiomyocyte apoptosis, autophagy and oxidative stress level when C57BL/6 J mice were subjected to DOX. Mechanistically, the overexpression of Cezanne significantly reversed the in-activation of the PI3K/AKT/mTOR pathway induced by DOX, while the inhibitors of this pathway abolished the effect of Cezanne, suggesting that the PI3K/AKT/mTOR pathway plays a role in the protective function of Cezanne. These findings indicate that Cezanne could ameliorate DOX-induced cardiotoxicity by attenuating the apoptosis and autophagy of cardiomyocytes and decreasing the level of oxidative stress.


Subject(s)
Cardiotoxicity , Proto-Oncogene Proteins c-akt , Mice , Rats , Animals , Cardiotoxicity/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mice, Inbred C57BL , Oxidative Stress , Doxorubicin/toxicity , Myocytes, Cardiac , Apoptosis , TOR Serine-Threonine Kinases/metabolism , Autophagy
3.
Front Pharmacol ; 13: 1026641, 2022.
Article in English | MEDLINE | ID: mdl-36330090

ABSTRACT

Sepsis-induced myocardial dysfunction (SIMD) is a fatal disease with no specific treatment worldwide to this day. As a biological product, platelet-rich plasma (PRP) has attracted much attention due to its diverse and potential biological effects. However, its role in lipopolysaccharide (LPS)-induced cardiac injury has not been fully investigated. This study aimed to explore the mechanism of PRP in SIMD. PRP (30 µL) was injected in situ into the heart, and LPS (10 mg/kg) was injected intraperitoneally into mice. Neonatal rat cardiomyocytes were treated with LPS (1 µg/ml) for 24 h. The results showed that, compared with the LPS group, PRP significantly decreased the levels of Lactate dehydrogenase (LDH) and Creatine Kinase MB (CK-MB), and improved cardiac function. In addition, PRP markedly decreased the Malonic dialdehyde (MDA) content, and increased the Superoxide dismutase (SOD) activity and Glutathione (GSH) level, demonstrating that PRP alleviated LPS-induced oxidative stress. The Western blot and qPCR results showed that LPS-induced ferroptosis and inflammation effects in vivo and in vitro were ameliorated after PRP treatment. Moreover, PRP can alleviate erastin-induced ferroptosis and improve cell viability. Mechanistically, p-AKT and p-mTOR expressions were down-regulated after treatment with LPS, while PRP pretreatment could reverse this effect. In summary, our study demonstrated that PRP could play a unique role in reducing LPS-induced cardiac injury through regulation of AKT/mTOR signaling pathways. These findings provide a new therapeutic direction for treating SIMD.

4.
Dis Markers ; 2022: 8611755, 2022.
Article in English | MEDLINE | ID: mdl-36072904

ABSTRACT

Objective: To screen for potential endoplasmic reticulum stress- (ERS-) related biomarkers of periodontitis using machine learning methods and explore their relationship with immune cells. Methods: Three datasets of periodontitis (GSE10334, GES16134, and GES23586) were obtained from the Gene Expression Omnibus (GEO), and the samples were randomly assigned to the training set or the validation set. ERS-related differentially expressed genes (DEGs) between periodontitis and healthy periodontal tissues were screened and analyzed for GO, KEGG, and DO enrichment. Key DEGs were screened by two machine learning algorithms, LASSO regression and support vector machine-recursive feature elimination (SVM-RFE); then, the potential biomarkers were identified through validation. The infiltration of immune cells of periodontitis was calculated using the CIBERSORT algorithm, and the correlation between immune cells and potential biomarkers was specifically analyzed through the Spearman method. Results: We obtained 36 ERS-related DEGs of periodontitis from the training set, from which 11 key DEGs were screened by further machine learning. SERPINA1, ERLEC1, and VWF showed high diagnostic values (AUC > 0.85), so they were considered as potential biomarkers for periodontitis. According to the results of the immune cell infiltration analysis, these three potential biomarkers showed marked correlations with plasma cells, neutrophils, resting dendritic cells, resting mast cells, and follicular helper T cells. Conclusions: Three ERS-related genes, SERPINA1, ERLEC1, and VWF, showed valuable biomarker potential for periodontitis, which provide a target base for future studies on early diagnosis and treatment of periodontitis.


Subject(s)
Computational Biology , Periodontitis , Biomarkers , Computational Biology/methods , Endoplasmic Reticulum Stress , Gene Expression Profiling/methods , Humans , Periodontitis/genetics , Support Vector Machine , von Willebrand Factor
5.
Arch Biochem Biophys ; 724: 109266, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35523269

ABSTRACT

Fibrosis is one of the crucial reasons for cardiac dysfunction after myocardial infarction (MI). Understanding the underlying molecular mechanism that causes fibrosis is crucial to developing effective therapy. Recently, OUT domain-containing 7B (OTUD7B), also called Cezanne, a multifunctional deubiquitylate, has been found to play various roles in cancer and vascular diseases and control many important signaling pathways, including inflammation, proliferation, and so on. However, whether OTUD7B plays a role in fibrosis caused by MI remains unclear. Our study aimed to explore the function of OTUD7B in cardiac fibrosis and investigate the underlying mechanism. We found that the expression of OTUD7B was downregulated in the MI rat model and cultured cardiac fibroblasts (CFs) in hypoxic conditions and after TGF-ß1 treatment. In vitro, silencing OTUD7B using small interfering RNA (siRNA) increased α-SMA (smooth muscle actin α) and collagen Ⅰ levels in CFs, whereas the overexpression of OTUD7B using adenovirus decreased their expression. Mechanistically, OTUD7B could regulate the phosphorylation of focal adhesion kinase (FAK), a non-receptor tyrosine kinase that has been proved to act as a potential mediator of fibrosis, and ERK/P38 MAPK was involved in this regulation process. In vitro, overexpression of OTUD7B downregulated the phosphorylation level of FAK and then inhibited ERK/P38 phosphorylation, thus leading to decreased α-SMA and collagen Ⅰ expressions, while OTUD7B knockdown showed an opposite result. These findings suggest that OTUD7B could become a potentially effective therapeutic strategy against fibrosis after MI.


Subject(s)
Endopeptidases/metabolism , Myocardial Infarction , Animals , Collagen Type I/metabolism , Fibroblasts/metabolism , Fibrosis , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Myocardial Infarction/metabolism , Myocardium/metabolism , RNA, Small Interfering/metabolism , Rats , Signal Transduction , Transforming Growth Factor beta1/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
6.
Front Cardiovasc Med ; 9: 797137, 2022.
Article in English | MEDLINE | ID: mdl-35224040

ABSTRACT

Myocardial infarction or pressure overload leads to cardiac fibrosis, the leading cause of heart failure. ADAMTS8 (A disintegrin and metalloproteinase with thrombospondin motifs 8) has been reported to be involved in many fibrosis-related diseases. However, the specific role of ADAMTS8 in cardiac fibrosis caused by myocardial infarction or pressure overload is yet unclear. The present study aimed to explore the function of ADAMTS8 in cardiac fibrosis and its underlying mechanism. ADAMTS8 expression was significantly increased in patients with dilated cardiomyopathy; its expression myocardial infarction and TAC rat models was also increased, accompanied by increased expression of α-SMA and Collagen1. Adenovirus-mediated overexpression of ADAMTS8 through cardiac in situ injection aggravated cardiac fibrosis and impaired cardiac function in the myocardial infarction rat model. Furthermore, in vitro studies revealed that ADAMTS8 promoted the activation of cardiac fibroblasts; ADAMTS8 acted as a paracrine mediator allowing for cardiomyocytes and fibroblasts to communicate indirectly. Our findings showed that ADAMTS8 could damage the mitochondrial function of cardiac fibroblasts and then activate the PI3K-Akt pathway and MAPK pathways, promoting up-regulation of YAP expression, with EGFR upstream of this pathway. This study systematically revealed the pro-fibrosis effect of ADAMTS8 in cardiac fibrosis and explored its potential role as a therapeutic target for the treatment of cardiac fibrosis and heart failure.

7.
Biomolecules ; 12(2)2022 02 12.
Article in English | MEDLINE | ID: mdl-35204799

ABSTRACT

Doxorubicin (DOX) is an effective chemotherapeutic agent that plays an unparalleled role in cancer treatment. However, its serious dose-dependent cardiotoxicity, which eventually contributes to irreversible heart failure, has greatly limited the widespread clinical application of DOX. A previous study has demonstrated that the ribonucleotide reductase M2 subunit (RRM2) exerts salutary effects on promoting proliferation and inhibiting apoptosis and autophagy. However, the specific function of RRM2 in DOX-induced cardiotoxicity is yet to be determined. This study aimed to elucidate the role and potential mechanism of RRM2 on DOX-induced cardiotoxicity by investigating neonatal primary cardiomyocytes and mice treated with DOX. Subsequently, the results indicated that RRM2 expression was significantly reduced in mice hearts and primary cardiomyocytes. Apoptosis and autophagy-related proteins, such as cleaved-Caspase3 (C-Caspase3), LC3B, and beclin1, were distinctly upregulated. Additionally, RRM2 deficiency led to increased autophagy and apoptosis in cells. RRM2 overexpression, on the contrary, alleviated DOX-induced cardiotoxicity in vivo and in vitro. Consistently, DIDOX, an inhibitor of RRM2, attenuated the protective effect of RRM2. Mechanistically, we found that AKT/mTOR inhibitors could reverse the function of RRM2 overexpression on DOX-induced autophagy and apoptosis, which means that RRM2 could have regulated DOX-induced cardiotoxicity through the AKT/mTOR signaling pathway. In conclusion, our experiment established that RRM2 could be a potential treatment in reversing DOX-induced cardiac dysfunction.


Subject(s)
Cardiotoxicity , Doxorubicin , Proto-Oncogene Proteins c-akt , Ribonucleoside Diphosphate Reductase , Animals , Apoptosis , Cardiotoxicity/drug therapy , Doxorubicin/pharmacology , Mice , Myocytes, Cardiac/metabolism , Oxidative Stress , Proto-Oncogene Proteins c-akt/metabolism , Ribonucleoside Diphosphate Reductase/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
8.
APL Photonics ; 6(4)2021 Apr.
Article in English | MEDLINE | ID: mdl-35308602

ABSTRACT

Quantitative phase imaging (QPI) has been widely applied in characterizing cells and tissues. Spatial light interference microscopy (SLIM) is a highly sensitive QPI method due to its partially coherent illumination and common path interferometry geometry. However, SLIM's acquisition rate is limited because of the four-frame phase-shifting scheme. On the other hand, off-axis methods such as diffraction phase microscopy (DPM) allow for single-shot QPI. However, the laser-based DPM system is plagued by spatial noise due to speckles and multiple reflections. In a parallel development, deep learning was proven valuable in the field of bioimaging, especially due to its ability to translate one form of contrast into another. Here, we propose using deep learning to produce synthetic, SLIM-quality, and high-sensitivity phase maps from DPM using single-shot images as the input. We used an inverted microscope with its two ports connected to the DPM and SLIM modules such that we have access to the two types of images on the same field of view. We constructed a deep learning model based on U-net and trained on over 1000 pairs of DPM and SLIM images. The model learned to remove the speckles in laser DPM and overcame the background phase noise in both the test set and new data. The average peak signal-to-noise ratio, Pearson correlation coefficient, and structural similarity index measure were 29.97, 0.79, and 0.82 for the test dataset. Furthermore, we implemented the neural network inference into the live acquisition software, which now allows a DPM user to observe in real-time an extremely low-noise phase image. We demonstrated this principle of computational interference microscopy imaging using blood smears, as they contain both erythrocytes and leukocytes, under static and dynamic conditions.

9.
Opt Express ; 28(23): 34190-34200, 2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182894

ABSTRACT

Tissue birefringence is an intrinsic marker of potential value for cancer diagnosis. Traditionally, birefringence properties have been studied by using intensity-based formalisms, through the Mueller matrix algebra. On the other hand, the Jones matrix description allows for a direct assessment of the sample's anisotropic response. However, because Jones algebra is based on complex fields, requiring measurements of both phase and amplitude, it is less commonly used. Here we propose a real-time imaging method for measuring Jones matrices by quantitative phase imaging. We combine a broadband phase imaging system with a polarization-sensitive detector to obtain Jones matrices at each point in a megapixel scale image, with near video rate capture speeds. To validate the utility of our approach, we measured standard targets, partially birefringent samples, dynamic specimens, and thinly sliced histopathological tissue.


Subject(s)
Birefringence , Ligaments/diagnostic imaging , Microscopy, Polarization/methods , Animals , Anisotropy , Image Enhancement/methods , Image Processing, Computer-Assisted/methods , Mice , Microspheres , Polystyrenes
SELECTION OF CITATIONS
SEARCH DETAIL
...