Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Endocrinol ; 592: 112292, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830447

ABSTRACT

RESEARCH QUESTION: Granulosa cells (GCs) dysfunction plays a crucial role in the pathogenesis of polycystic ovary syndrome (PCOS). It is reported that YTH domain-containing family protein 2 (YTHDF2) is upregulated in mural GCs of PCOS patients. What effect does the differential expression of YTHDF2 have in PCOS patients? DESIGN: Mural GCs and cumulus GCs from 15 patients with PCOS and 15 ovulatory controls and 4 cases of pathological sections in each group were collected. Real-time PCR, Western Blot, immunohistochemistry, and immunofluorescence experiments were conducted to detect gene and protein expression. RNA immunoprecipitation assay was performed to evaluate the binding relationship between YTHDF2 and MSS51. Mitochondrial morphology, cellular ATP and ROS levels and glycolysis-related gene expression were detected after YTHDF2 overexpression or MSS51 inhibition. RESULTS: In the present study, we found that YTHDF2 was upregulated in GCs of PCOS patients while MSS51 was downregulated. YTHDF2 protein can bind to MSS51 mRNA and affect MSS51 expression. The reduction of MSS51 expression or the increase in YTHDF2 expression can lead to mitochondrial damage, reduced ATP levels, increased ROS levels and reduced expression of LDHA, PFKP and PKM. CONCLUSIONS: YTHDF2 may regulate the expression of MSS51, affecting the structure and function of mitochondria in GCs and interfering with cellular glycolysis, which may disturb the normal biological processes of GCs and follicle development in PCOS patients.

2.
Psychophysiology ; : e14631, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898649

ABSTRACT

Transcranial magnetic stimulation (TMS) is pivotal in the field of major depressive disorder treatment. Due to its unsatisfied response rate, an increasing number of researchers have turned their attention towards optimizing TMS site localization. Since the influence of TMS in reducing heart rate (HR) offers insights into its regulatory impact on the autonomic nervous system, a novel approach, called neurocardiac-guided TMS (NCG-TMS), has been proposed to pinpoint the brain region eliciting the maximal individual reduction in HR as a personalized optimal stimulation target. The present study intends to systematically explore the effects of stimulation frequency, left and right hemispheres, stimulation positions, and individual differences on HR modulation using the NCG-TMS method. In experiment 1, low-frequency TMS was administered to 30 subjects, and it was found that low-frequency NCG-TMS significantly downregulated HR, with more significant effects in the right hemisphere than in the left hemisphere and the prefrontal cortex than in other brain areas. In experiment 2, high-frequency NCG-TMS stimulation was administered to 30 subjects, showing that high-frequency NCG-TMS also downregulated HR and had the greatest modulatory effect in the right prefrontal region. Simultaneously, both experiments revealed sizeable individual variability in the optimal stimulation site, which in turn validated the feasibility of the NCG-TMS method. In conclusion, the present experiments independently replicated the effect of NCG-TMS, provided an effect of high-/low-frequency TMS stimulation to downregulate HR, and identified a right lateralization of the HR modulation effect.

3.
Arch Gynecol Obstet ; 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37389643

ABSTRACT

PURPOSE: To investigate whether trophectoderm biopsy increases the risk of adverse maternal and neonatal outcomes in intracytoplasmic sperm injection (ICSI) single frozen-thawed blastocyst transfer cycles. METHODS: This respective cohort study enrolled 3373 ICSI single frozen-thawed blastocyst transfer cycles with and without trophectoderm biopsy. Statistical methods including univariate logistic regression analysis, multivariate logistic regression analysis, and stratified analyses were performed to explore the impact of trophectoderm biopsy on adverse maternal and neonatal outcomes. RESULTS: The rates of adverse maternal and neonatal outcomes were comparable between the two groups. Univariate analysis showed that the live birth rate (45.15% vs. 40.75%; P = 0.010) in the biopsied group was statistically higher than that in the unbiopsied group, and the rates of miscarriage (15.40% vs. 20.00%; P = 0.011) and birth defects (0.58% vs. 2.16%; P = 0.007) were statistically lower in the biopsied group. After adjusting for confounding factors, the rates of miscarriage (aOR = 0.74; 95% CI = 0.57-0.96; P = 0.022) and birth defects (aOR = 0.24, 95% CI = 0.08-0.70, P = 0.009) in the biopsied group were significantly lower than those in the unbiopsied group. Stratified analyses showed that the birth defects rate after biopsy was significantly reduced in the subgroups of age < 35 years old, BMI ≥ 24 kg/m2, artificial cycle with downregulation, poor-quality blastocysts, and Day 5 poor-quality blastocysts. CONCLUSION: Preimplantation genetic testing (PGT) with trophectoderm biopsy does not increase the risk of adverse maternal and neonatal outcomes in ICSI single frozen-thawed blastocyst transfer cycles, and PGT can effectively reduce the rates of miscarriage and birth defects.

4.
Reprod Biol Endocrinol ; 20(1): 90, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35710416

ABSTRACT

BACKGROUND: Nonobstructive azoospermia (NOA) is one of the most difficult forms of male infertility to treat, and its pathogenesis is still unclear. miRNAs can regulate autophagy by affecting their target gene expression. Our previous study found that miR-188-3p expression in NOA patients was low. There are potential binding sites between the autophagy gene ATG7 and miR-188-3p. This study aimed to verify the binding site between miR-188-3p and ATG7 and whether miR-188-3p affects autophagy and participates in NOA by regulating ATG7 to influence the autophagy marker genes LC3 and Beclin-1. METHODS: Testicular tissue from 16 NOA patients and 16 patients with normal spermatogenesis and 5 cases in each group of pathological sections were collected. High-throughput sequencing was performed to detect mRNA expression differences. Quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, immunohistochemical staining and immunofluorescence were used to detect protein localization and expression. Autophagosome changes were detected by electron microscopy. The targeting relationship between miR-188-3p and ATG7 was confirmed by a luciferase assay. RESULTS: ATG7 protein was localized in the cytoplasm of spermatogenic cells at all levels, and the ATG7 gene (p = 0.019) and protein (p = 0.000) were more highly expressed in the NOA group. ATG7 expression after overexpression/inhibition of miR-188-3p was significantly lower (p = 0.029)/higher (p = 0.021) than in the control group. After overexpression of miR-188-3p, the ATG7 3'UTR-WT luciferase activity was impeded (p = 0.004), while the ATG7 3'UTR-MUT luciferase activity showed no significant difference (p = 0.46). LC3 (p = 0.023) and Beclin-1 (p = 0.041) expression in the NOA group was significantly higher. LC3 and Beclin-1 gene expression after miR-188-3p overexpression/inhibition was significantly lower (p = 0.010 and 0.024, respectively) and higher (p = 0.024 and 0.049, respectively). LC3 punctate aggregation in the cytoplasm decreased after overexpression of miR-188-3p, while the LC3 punctate aggregation in the miR-188-3p inhibitor group was higher. The number of autophagosomes in the miR-188-3p mimic group was lower than the number of autophagosomes in the mimic NC group. CONCLUSIONS: LC3 and Beclin-1 were more highly expressed in NOA testes and negatively correlated with the expression of miR-188-3p, suggesting that miR-188-3p may be involved in the process of autophagy in NOA. miR-188-3p may regulate its target gene ATG7 to participate in autophagy anDual luciferase experiment d affect the development of NOA.


Subject(s)
Azoospermia , MicroRNAs , 3' Untranslated Regions , Autophagy/genetics , Autophagy-Related Protein 7/genetics , Azoospermia/genetics , Beclin-1/genetics , Humans , Male , MicroRNAs/genetics , MicroRNAs/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...