Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Opt Lett ; 49(6): 1571-1574, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489453

ABSTRACT

Compensating for the intrinsic attosecond chirp (atto-chirp) of wideband high-order harmonics in the water window region is a significant challenge, in order to obtain isolated attosecond pulses (IAPs) with a width of tens of attoseconds (as). Here, we propose to realize the generation of IAP with duration as short as 20 as, central energy of 365 eV, and bandwidth exceeding 150 eV from chirp-free high harmonics generated by a four-color driving laser, without the necessity for atto-chirp compensation with natural materials. Unlike any other gating methods that an IAP arises from only one electron ionization event, we take advantage of the interference between harmonic radiation produced by multiple ionizing events. We further demonstrate that such chirp-free short IAP survives after taking account of macroscopic propagation effects. Given that the synthesized multicolor laser field can also effectively increase the harmonic flux, this work provides a practical way for experiments to generate the broad bandwidth chirp-free IAPs in the water window region.

2.
ACS Cent Sci ; 10(1): 163-175, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38292609

ABSTRACT

Light provides high temporal precision for neuronal modulations. Small molecules are advantageous for neuronal modulation due to their structural diversity, allowing them to suit versatile targets. However, current optochemical methods release uncaged small molecules with uniform concentrations in the irradiation area, which lack spatial specificity as counterpart optogenetic methods from genetic encoding for photosensitive proteins. Photocatalysis provides spatial specificity by generating reactive species in the proximity of photocatalysts. However, current photocatalytic methods use antibody-tagged heavy-metal photocatalysts for spatial specificity, which are unsuitable for neuronal applications. Here, we report a genetically encoded metal-free photocatalysis method for the optochemical modulation of neurons via deboronative hydroxylation. The genetically encoded photocatalysts generate doxorubicin, a mitochondrial uncoupler, and baclofen by uncaging stable organoboronate precursors. The mitochondria, nucleus, membrane, cytosol, and ER-targeted drug delivery are achieved by this method. The distinct signaling pathway dissection in a single projection is enabled by the dual optogenetic and optochemical control of synaptic transmission. The itching signaling pathway is investigated by photocatalytic uncaging under live-mice skin for the first time by visible light irradiation. The cell-type-specific release of baclofen reveals the GABABR activation on NaV1.8-expressing nociceptor terminals instead of pan peripheral sensory neurons for itch alleviation in live mice.

3.
Heliyon ; 9(8): e18875, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37576217

ABSTRACT

In recent years, higher requirements have been placed on the response characteristics of X-ray detectors in the field of medical diagnostic imaging. Due to this, high sensitivity, high attenuation coefficient and low cost detection materials need to be developed. In this paper, the geometric model of a detector was established by Geant4 code. The absorption efficiency and mass attenuation coefficient of MAPbBr3 crystals were calculated in the energy range of 30 keV to 100 keV. Compared with the mass attenuation coefficient of the NIST database, the deviation was within 1.39%. The signal charge number and detection sensitivity of the X-ray interaction with the MAPbBr3 crystal ware calculated. Compared with the CdTe crystal and α-Se, the MAPbBr3 crystal still had a larger detection sensitivity under a smaller applied electric field, which was approximately 9 times higher than that of α-Se. This result indicated that the detection sensitivity could be greatly improved by using a high atomic number and high charge mobility-lifetime product. Based on the simulation results, the 2 mm thick MAPbBr3 crystal exhibited the highest detection sensitivity at 60 keV X-rays, which was in agreement with the experimental results.

4.
Opt Express ; 31(11): 17782-17791, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37381503

ABSTRACT

Multipartite entanglements are essential resources for proceeding tasks in quantum information science and technology. However, generating and verifying them present significant challenges, such as the stringent requirements for manipulations and the need for a huge number of building-blocks as the systems scale up. Here, we propose and experimentally demonstrate the heralded multipartite entanglements on a three-dimensional photonic chip. Integrated photonics provide a physically scalable way to achieve an extensive and adjustable architecture. Through sophisticated Hamiltonian engineering, we are able to control the coherent evolution of shared single photon in the multiple spatial modes, dynamically tuning the induced high-order W-states of different orders in a single photonic chip. Using an effective witness, we successfully observe and verify 61-partite quantum entanglements in a 121-site photonic lattice. Our results, together with the single-site-addressable platform, offer new insights into the accessible size of quantum entanglements and may facilitate the developments of large-scale quantum information processing applications.

5.
Phys Rev Lett ; 130(6): 060802, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36827576

ABSTRACT

Boson sampling is a computational problem, which is commonly believed to be a representative paradigm for attaining the milestone of quantum advantage. So far, massive efforts have been made to the experimental large-scale boson sampling for demonstrating this milestone, while further applications of the machines remain a largely unexplored area. Here, we investigate experimentally the efficiency and security of a cryptographic one-way function that relies on coarse-grained boson sampling, in the framework of a photonic boson-sampling machine fabricated by a femtosecond laser direct writing technique. Our findings demonstrate that the implementation of the function requires moderate sample sizes, which can be over 4 orders of magnitude smaller than the ones predicted by the Chernoff bound; whereas for numbers of photons n≥3 and bins d∼poly(m,n), the same output of the function cannot be generated by nonboson samplers. Our Letter is the first experimental study that deals with the potential applications of boson sampling in the field of cryptography and paves the way toward additional studies in this direction.

6.
Opt Express ; 31(2): 1567-1582, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36785189

ABSTRACT

We theoretically study the dependence of below-threshold harmonic generation (BTHG) of atoms on the carrier-envelope phase (CEP) driven by few-cycle mid-infrared laser pulses. The BTHG spectra can be accurately and efficiently calculated by solving the three-dimensional time-dependent Schrödinger equation using the time-dependent generalized pseudospectral method. We present the BTHG spectra as a function of the laser-field CEP. CEP-dependent enhancement or suppression occurred at low laser field intensities owing to the changes in the resonant effects associated with multiple quantum trajectories. However, the BTHG of atoms driven by high laser intensities is insensitive to the CEP. The synchrosqueezing time-frequency transform of the BTHG and extended semiclassical analysis are performed to elucidate the underlying physical mechanism.

7.
Opt Express ; 31(1): 442-451, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36606978

ABSTRACT

We theoretically present the waveform controls of terahertz (THz) radiations generated from homogeneous and rippled plasma within inhomogeneous external electrostatic field. The Particle-in-cell (PIC) simulations is implemented to demonstrate generation and controllability of three types of THz pulses: single frequency THz pulse in homogeneous plasma, broadband THz pulse and dual frequency THz pulse in rippled plasma. The single frequency THz pulse can be tuned via shifting the knob of electron density of homogeneous plasma. Waveform of broadband THz pulse can be regulated into an envelope-like shape by varying amplitude of electron density of rippled plasma. The two center frequencies' interval of dual frequency THz pulse can be controlled by wave numbers of density distribution of rippled plasma. This work provides a potential means to generate the dual frequency THz pulses with two harmonic frequencies (ω+Ωω, Ω=2) or incommensurate frequencies (ω+Ωω, Ω=1.7,1.8, 2.2…).

8.
Recent Pat Nanotechnol ; 17(2): 165-172, 2023.
Article in English | MEDLINE | ID: mdl-34607553

ABSTRACT

BACKGROUND: Titanium dioxide (TiO2) nanotubes arrays have shown tremendous application foreground due to their unique characters of structure and performance. However, the single bio-function is still the limit on cardiovascular biomaterials. METHODS: The loadability function provides the possibility for the TiO2 nanotubes arrays to realize composite multifunction. The copper can catalyze the release of nitric oxide to promote the proliferation of endothelium cells and improve the anticoagulant. Also, zinc can adjust the inflammatory responses to improve anti-inflammation. RESULTS: In this patent work, we co-doped the copper and zinc onto TiO2 nanotubes arrays to estimate the hemocompatibility, cytocompatibility and responses of inflammation. The results showed that copper and zinc could introduce better multi-biofunctions to the TiO2 nanotubes arrays for the application in cardiovascular biomaterials. CONCLUSION: In summary, the NTs@Cu/Zn sample as a new composite material in this study had significant biocompatibility in vascular implantation and can be used as a potential material for polymer- free drug-eluting stents.


Subject(s)
Biocompatible Materials , Nanotubes , Biocompatible Materials/chemistry , Zinc , Copper/chemistry , Nitric Oxide , Patents as Topic , Nanotubes/chemistry
9.
J Colloid Interface Sci ; 629(Pt A): 582-592, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36088703

ABSTRACT

Photothermal responsive slippery surfaces with switchable superwettability are promising in the fields of biomedicine, self-cleaning, anti-corrosion, and lab-on-a-chip systems. However, the development of a light switchable slippery surface that combines high-performance photothermal materials with hierarchical microstructures of special orientation remains challenging, which limits the applications in anisotropic droplet manipulation. Herein, we demonstrate a photothermal responsive slippery surface based on laser-structured graphene and polyvinylidene difluoride composites (L-G@PVDF) for controllable droplet manipulation. The L-G@PVDF film exhibits high light absorption (∼95.4%) in the visible and NIR region. After lubricating with paraffin, the resultant surface shows excellent self-healing ability and light-responsive wettability change due to the photothermal effect of L-G@PVDF and the hot melting effect of paraffin. Additionally, by introducing anisotropic grooved structures, the paraffin-infused L-G@PVDF surface displays anisotropic wettability that further affects droplet manipulation under light irradiation. Also, the photothermal responsive slippery property endows the paraffin-infused L-G@PVDF surface with excellent anti-frosting and de-icing capability. Moreover, the smart paraffin-infused L-G@PVDF surface can be combined with a microfluidics chip for light-driven automatic sampling. This study offers insight into the rational design of photothermal responsive slippery surfaces for controllable droplet manipulation.


Subject(s)
Graphite , Graphite/chemistry , Paraffin , Wettability , Lasers
10.
Zhonghua Nan Ke Xue ; 29(9): 821-825, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-38639595

ABSTRACT

OBJECTIVE: Exploring the clinical efficacy, safety, and surgical techniques of two-way rendezvous and trenching method for transurethral holmium laser prostatectomy in the treatment of benign prostatic hyperplasia. METHODS: Retrospective analysis of clinical data on preoperative, intraoperative, and postoperative follow-up of 326 patients with benign prostatic hyperplasia who underwent two-way rendezvous and trenching method of transurethral holmium laser prostatectomy at the Urology Department of Wujin People's Hospital in Changzhou City from January 2020 to January 2023. RESULTS: Compared with preoperative measures, IPSS symptom score, quality of life (QoL) score, maximum urinary flow rate (Qmax), and residual urine volume (PVR) were significantly improved at 1, 6, and 12 months postoperatively (P<0.05). Thirty two patients with normal and regular sexual life pre-operation were observed. There were no significant changes in their IIEF-5 score and Erectile Hardness Scale (EHGS) score after surgery compared with pre-operation (P<0.05). There were 9 patients (28.12%) with retrograde ejaculation after surgery. CONCLUSION: The two-way rendezvous and trenching method of transurethral holmium laser prostatectomy is a safe and effective method for treating benign prostatic hyperplasia, with precise results, high safety, minimal trauma, and fast postoperative recovery.


Subject(s)
Laser Therapy , Lasers, Solid-State , Prostatic Hyperplasia , Transurethral Resection of Prostate , Male , Humans , Prostate , Prostatic Hyperplasia/diagnosis , Quality of Life , Lasers, Solid-State/therapeutic use , Retrospective Studies , Transurethral Resection of Prostate/methods , Treatment Outcome , Laser Therapy/methods , Holmium
11.
Zhonghua Nan Ke Xue ; 29(10): 899-903, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38639659

ABSTRACT

OBJECTIVE: Comparison of clinical efficacy between transurethral holmium laser prostate enucleation (two-way rendezvous and trenching method) and transurethral plasma enucleation. METHODS: A total of 483 patients with benign prostatic hyperplasia who were admitted to our hospital from December 2019 to December 2022 were randomly divided into an observation group (245 cases) and a control group (238 cases) using a random number table method. The observation group underwent transurethral holmium laser prostatectomy, while the control group underwent transurethral plasma prostatectomy,evaluate the efficacy of two surgical methods. RESULT: The IPSS symptom score, quality of life (QOL) score, maximum urinary flow rate (Qmax), residual urine volume (PVR) and other indicators were significantly improved in both groups after 6 months of surgery compared to before (P<0.05), and there was no statistically significant difference between the two groups (P>0.05). The incidence of postoperative complications in the observation group was significantly lower than that in the control group (P<0.05). There was no statistically significant difference in sexual function and retrograde ejaculation between the two groups of patients(P>0.05). CONCLUSION: Both surgical methods have good surgical efficacy, but compared with prostate plasma resection, holmium laser prostatectomy can reduce intraoperative bleeding in patients with BPH, effectively shorten catheter retention time, patient hospitalization time, and postoperative bladder flushing time, resulting in higher quality of life and safety.


Subject(s)
Laser Therapy , Lasers, Solid-State , Prostatic Hyperplasia , Transurethral Resection of Prostate , Male , Humans , Prostatic Hyperplasia/complications , Quality of Life , Lasers, Solid-State/therapeutic use , Transurethral Resection of Prostate/methods , Prostate/surgery , Laser Therapy/methods , Treatment Outcome , Holmium
12.
Inorg Chem ; 61(48): 19232-19239, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36395178

ABSTRACT

We report two novel titanium-based pnictide oxide compounds (EuF)2Ti2Pn2O (Pn = Sb, Bi), which are synthesized by replacing Sr2+ in (SrF)2Ti2Pn2O [Liu, R. H. Structure and Physical Properties of the Layered Pnictide-Oxides: (SrF)2Ti2Pn2O (Pn = As, Sb) and (SmO)2Ti2Sb2O. Chem. Mater. 2010, 22, 1503-1508] with Eu2+ using a solid-state reaction. (EuF)2Ti2Sb2O exhibits an obvious anomaly in resistivity and heat capacity at T ∼ 195 K, which may arise from the spin-density wave/charge-density wave instability. Similar features are also observed in BaTi2Pn2O, (SrF)2Ti2Pn2O, and Na2Ti2Pn2O (Pn = As and Sb) [Liu, R. H. Structure and Physical Properties of the Layered Pnictide-Oxides: (SrF)2Ti2Pn2O (Pn = As, Sb) and (SmO)2Ti2Sb2O. Chem. Mater. 2010, 22, 1503-1508, Ozawa, T. C. Chemistry of layered d-metal pnictide oxides and their potential as candidates for new superconductors. Sci. Technol. Adv. Mater. 2008, 9, 033003, Wang, X. F. Structure and physical properties for a new layered pnictide-oxide: BaTi2As2O. J. Phys.: Condens. Matter. 2010, 22, 075702, and Xu, H. C. Electronic structure of the BaTi2As2O parent compound of the titanium-based oxypnictide superconductor. Phys. Rev. B 2014, 89, 155108]. Magnetic susceptibility measurements indicate an antiferromagnetic transition at T ∼ 2.5 K for (EuF)2Ti2Sb2O. In particular, the electronic specific heat coefficients of both (EuF)2Ti2Sb2O and (EuF)2Ti2Bi2O are significantly enhanced compared to those of (SrF)2Ti2Pn2O, Na2Ti2Pn2O, and BaTi2Pn2O,1,5,6 which may be due to a strong electron correlation effect in this system. Thus, (EuF)2Ti2Pn2O (Pn = Sb, Bi) may provide new platforms for studying density wave, magnetic ordering, and electron correlation effects.

13.
Opt Express ; 30(18): 32887-32894, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36242341

ABSTRACT

Integrated photonic architectures based on optical waveguides are one of the leading candidates for the future realisation of large-scale quantum computation. One of the central challenges in realising this goal is simultaneously minimising loss whilst maximising interferometric visibility within waveguide circuits. One approach is to reduce circuit complexity and depth. A major constraint in most planar waveguide systems is that beamsplitter transformations between distant optical modes require numerous intermediate SWAP operations to couple them into nearest neighbour proximity, each of which introduces loss and scattering. Here, we propose a 3D architecture which can significantly mitigate this problem by geometrically bypassing trivial intermediate operations. We demonstrate the viability of this concept by considering a worst-case 2D scenario, where we interfere the two most distant optical modes in a planar structure. Using femtosecond laser direct-writing technology we experimentally construct a 2D architecture to implement Hong-Ou-Mandel interference between its most distant modes, and a 3D one with corresponding physical dimensions, demonstrating significant improvement in both fidelity and efficiency in the latter case. In addition to improving fidelity and efficiency of individual non-adjacent beamsplitter operations, this approach provides an avenue for reducing the optical depth of circuits comprising complex arrays of beamsplitter operations.

14.
Zhongguo Zhen Jiu ; 42(9): 1049-52, 2022 Sep 12.
Article in Chinese | MEDLINE | ID: mdl-36075604

ABSTRACT

The paper introduces professor FU Li-xin's theoretic ideas and experience in treatment of vertigo. Professor FU believes that this disease is closely related to the blockage of qi movement in the middle jiao, opening-closing disarrangement in the pivot, "gate" obstruction, malnutrition of brain orifice and decreased blood flow in the nape. Based on the holistic idea of qi movement in traditional Chinese medicine and the circulatory theory of western medicine, the characteristics of the specific acupuncture therapy for "regulating the middle jiao, opening gate and relaxing tendon" are summarized. Using the layered needling technique at Zhongwan (CV 12) and "gate points" in the neck region, the tendon-bone needling technique with modified "dark tortoise seeking hole" at local tendon blockage points, vertigo is cured through regulating qi in the middle jiao, opening gate and nourishing marrow, relaxing tendon and harmonizing the mind.


Subject(s)
Acupuncture Therapy , Acupuncture , Acupuncture Points , Acupuncture Therapy/methods , Humans , Medicine, Chinese Traditional , Tendons , Vertigo/therapy
15.
Opt Lett ; 47(15): 3816-3819, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35913322

ABSTRACT

The two-color strong-field mixing in gas medium is a widely used approach to generate bright broadband terahertz (THz) radiation. Here, we present a new, to the best of our knowledge, and counterintuitive method to promote THz performance in the two-color scheme. Beyond our knowledge that the maximum THz generation occurs with two-color foci overlapped, we found that, when the foci of two-color beams are noticeably separated along the propagation axis resulting in cascading plasmas, the THz conversion efficiency is surged by one order of magnitude and the bandwidth is stretched by more than two times, achieving 10-3 conversion efficiency and >100 THz bandwidth under the condition of 800/400 nm, ∼35 fs driving lasers. With the help of the pulse propagation equation and photocurrent model, the observations can be partially understood by the compromise between THz generation and absorption due to the spatial redistribution of laser energy in cascading plasmas. The present method can be extended to a mid-infrared driving laser, and new records of THz peak power and conversion efficiency are expected.

16.
Mol Psychiatry ; 27(10): 4077-4091, 2022 10.
Article in English | MEDLINE | ID: mdl-35804093

ABSTRACT

Fear extinction allows for adaptive control of learned fear responses but often fails, resulting in a renewal or spontaneous recovery of the extinguished fear, i.e., forgetting of the extinction memory readily occurs. Using an activity-dependent neuronal labeling strategy, we demonstrate that engram neurons for fear extinction memory are dynamically positioned in the medial prefrontal cortex (mPFC), basolateral amygdala (BLA), and ventral hippocampus (vHPC), which constitute an engram construct in the term of directional engram synaptic connectivity from the BLA or vHPC to mPFC, but not that in the opposite direction, for retrieval of extinction memory. Fear renewal or spontaneous recovery switches the extinction engram construct from an accessible to inaccessible state, whereas additional extinction learning or optogenetic induction of long-term potentiation restores the directional engram connectivity and prevents the return of fear. Thus, the plasticity of engram construct underlies forgetting of extinction memory.


Subject(s)
Basolateral Nuclear Complex , Extinction, Psychological , Extinction, Psychological/physiology , Fear/physiology , Prefrontal Cortex/physiology , Conditioning, Psychological/physiology , Basolateral Nuclear Complex/physiology
17.
J Hazard Mater ; 422: 126906, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34416696

ABSTRACT

The presence of viruses in water is a major risk for human and animal health due to their high resistance to disinfection. Pulsed corona discharge plasma (PCDP) efficiently inactivates bacteria by causing damage to biological macromolecules, but its effect on waterborne virus has not been reported. This study evaluated the inactivation efficacy of PCDP to viruses using spring viremia of carp virus (SVCV) as a model. The results showed that 4-log10 reduction of SVCV infectivity in cells was reached after 120 s treatment, and there was no significant difference in survival of fish infected with SVCV inactivated by PCDP for 240 s or more longer compared to the control fish without virus challenge, thus confirming the feasibility of PCDP to waterborne virus inactivation. Moreover, the high input energy density caused by voltage significantly improved the inactivation efficiency. The further research indicated that reactive species (RS) generated by pulsed corona discharge firstly reacted with phosphoprotein (P) and polymerase complex proteins (L) through penetration into the SVCV virions, and then caused the loss of viral infectivity by damage to genome and other structural proteins. This study has significant implications for waterborne virus removal and development of novel disinfection technologies.


Subject(s)
Carps , Viruses , Animals , Disinfection , Humans , Virus Inactivation , Water
18.
Front Endocrinol (Lausanne) ; 13: 1061091, 2022.
Article in English | MEDLINE | ID: mdl-36714595

ABSTRACT

Backgrounds: The pandemic of overweight and obesity (quantified by body mass index (BMI) ≥ 25) has rapidly raised the patient number of non-alcoholic fatty hepatocellular carcinoma (HCC), and several clinical trials have shown that BMI is associated with the prognosis of HCC. However, whether overweight/obesity is an independent prognostic factor is arguable, and the role of overweight/obesity-related metabolisms in the progression of HCC is scarcely known. Materials and methods: In the present study, clinical information, mRNA expression profile, and genomic data were downloaded from The Cancer Genome Atlas (TCGA) as a training cohort (TCGA-HCC) for the identification of overweight/obesity-related transcriptome. Machine learning and the Cox regression analysis were conducted for the construction of the overweight/obesity-associated gene (OAG) signature. The Kaplan-Meier curve, receiver operating characteristic (ROC) curve, and the Cox regression analysis were performed to assess the prognostic value of the OAG signature, which was further validated in two independent retrospective cohorts from the International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO). Subsequently, functional enrichment, genomic profiling, and tumor microenvironment (TME) evaluation were utilized to characterize biological activities associated with the OAG signature. GSE109211 and GSE104580 were retrieved to evaluate the underlying response of sorafenib and transcatheter arterial chemoembolization (TACE) treatment, respectively. The Genomics of Drug Sensitivity in Cancer (GDSC) database was employed for the evaluation of chemotherapeutic response. Results: Overweight/obesity-associated transcriptome was mainly involved in metabolic processes and noticeably and markedly correlated with prognosis and TME of HCC. Afterward, a novel established OAG signature (including 17 genes, namely, GAGE2D, PDE6A, GABRR1, DCAF8L1, DPYSL4, SLC6A3, MMP3, RIBC2, KCNH2, HTRA3, PDX1, ATHL1, PRTG, SHC4, C21orf29, SMIM32, and C1orf133) divided patients into high and low OAG score groups with distinct prognosis (median overall survival (OS): 24.87 vs. 83.51 months, p < 0.0001), and the values of area under ROC curve (AUC) in predicting 1-, 2-, 3-, and 4-year OS were 0.81, 0.80, 0.83, and 0.85, respectively. Moreover, the OAG score was independent of clinical features and also exhibited a good ability for prognosis prediction in the ICGC-LIHC-JP cohort and GSE54236 dataset. Expectedly, the OAG score was also highly correlated with metabolic processes, especially oxidative-related signaling pathways. Furthermore, abundant enrichment of chemokines, receptors, MHC molecules, and other immunomodulators as well as PD-L1/PD-1 expression among patients with high OAG scores indicated that they might have better responses to immunotherapy. However, probably exclusion of T cells from infiltrating tumors resulting in lower infiltration of effective T cells would restrict immunotherapeutic effects. In addition, the OAG score was significantly associated with the response of sorafenib and TACE treatment. Conclusions: Overall, this study comprehensively disclosed the relationship between BMI-guided transcriptome and HCC. Moreover, the OAG signature had the potential clinical applications in the future to promote clinical management and precision medicine of HCC.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Obesity , Overweight , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Cyclic Nucleotide Phosphodiesterases, Type 6 , Eye Proteins , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Obesity/complications , Obesity/genetics , Overweight/complications , Overweight/genetics , Retrospective Studies , Serine Endopeptidases , Sorafenib , Transcriptome , Tumor Microenvironment/genetics
19.
Front Cardiovasc Med ; 8: 773314, 2021.
Article in English | MEDLINE | ID: mdl-34957257

ABSTRACT

Various stresses, including pressure overload and myocardial stretch, can trigger cardiac remodeling and result in heart diseases. The disorders are associated with high risk of morbidity and mortality and are among the major health problems in the world. MicroRNAs, a class of ~22nt-long small non-coding RNAs, have been found to participate in regulating heart development and function. One of them, miR-208a, a cardiac-specific microRNA, plays key role(s) in modulating gene expression in the heart, and is involved in a broad array of processes in cardiac pathogenesis. Genetic deletion or pharmacological inhibition of miR-208a in rodents attenuated stress-induced cardiac hypertrophy and remodeling. Transgenic expression of miR-208a in the heart was sufficient to cause hypertrophic growth of cardiomyocytes. miR-208a is also a key regulator of cardiac conduction system, either deletion or transgenic expression of miR-208a disturbed heart electrophysiology and could induce arrhythmias. In addition, miR-208a appeared to assist in regulating the expression of fast- and slow-twitch myofiber genes in the heart. Notably, this heart-specific miRNA could also modulate the "endocrine" function of cardiac muscle and govern the systemic energy homeostasis in the whole body. Despite of the critical roles, the underlying regulatory networks involving miR-208a are still elusive. Here, we summarize the progress made in understanding the function and mechanisms of this important miRNA in the heart, and propose several topics to be resolved as well as the hypothetical answers. We speculate that miR-208a may play diverse and even opposite roles by being involved in distinct molecular networks depending on the contexts. A deeper understanding of the precise mechanisms of its action under the conditions of cardiac homeostasis and diseases is needed. The clinical implications of miR-208a are also discussed.

20.
Opt Express ; 29(21): 33245-33256, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34809140

ABSTRACT

We theoretically investigate the atomic-orbital-resolved vortex-shaped photoelectron momentum distributions (PMDs) and ionization probabilities by solving the two-dimensional time-dependent Schrödinger equation (2D-TDSE) of neon in a pair of delayed counter-rotating circularly polarized attosecond pulses. We found that the number of spiral arms in vortex patterns is twice the number of absorbed photons when the initial state is the ψm=±1 state, which satisfy a change from c2n+2 to c2n (n is the number of absorbed photons) rotational symmetry of the vortices if the 2p state is replaced by 2p+ or 2p- states. For two- and three-photon ionization, the magnetic quantum number dependence of ionization probabilities is quite weak. Interestingly, single-photon ionization is preferred when the electron and laser field corotate and ionization probabilities of 2p- is much larger than that of 2p+ if the proper time delay and wavelength are used. The relative ratio of ionization probabilities between 2p- and 2p+ is insensitive to laser peak intensity, which can be controlled by changing the wavelength, time delay, relative phase and amplitude ratio of two attosecond pulses.

SELECTION OF CITATIONS
SEARCH DETAIL
...