Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(11): 17782-17791, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37381503

ABSTRACT

Multipartite entanglements are essential resources for proceeding tasks in quantum information science and technology. However, generating and verifying them present significant challenges, such as the stringent requirements for manipulations and the need for a huge number of building-blocks as the systems scale up. Here, we propose and experimentally demonstrate the heralded multipartite entanglements on a three-dimensional photonic chip. Integrated photonics provide a physically scalable way to achieve an extensive and adjustable architecture. Through sophisticated Hamiltonian engineering, we are able to control the coherent evolution of shared single photon in the multiple spatial modes, dynamically tuning the induced high-order W-states of different orders in a single photonic chip. Using an effective witness, we successfully observe and verify 61-partite quantum entanglements in a 121-site photonic lattice. Our results, together with the single-site-addressable platform, offer new insights into the accessible size of quantum entanglements and may facilitate the developments of large-scale quantum information processing applications.

2.
Phys Rev Lett ; 130(6): 060802, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36827576

ABSTRACT

Boson sampling is a computational problem, which is commonly believed to be a representative paradigm for attaining the milestone of quantum advantage. So far, massive efforts have been made to the experimental large-scale boson sampling for demonstrating this milestone, while further applications of the machines remain a largely unexplored area. Here, we investigate experimentally the efficiency and security of a cryptographic one-way function that relies on coarse-grained boson sampling, in the framework of a photonic boson-sampling machine fabricated by a femtosecond laser direct writing technique. Our findings demonstrate that the implementation of the function requires moderate sample sizes, which can be over 4 orders of magnitude smaller than the ones predicted by the Chernoff bound; whereas for numbers of photons n≥3 and bins d∼poly(m,n), the same output of the function cannot be generated by nonboson samplers. Our Letter is the first experimental study that deals with the potential applications of boson sampling in the field of cryptography and paves the way toward additional studies in this direction.

3.
Opt Express ; 30(18): 32887-32894, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36242341

ABSTRACT

Integrated photonic architectures based on optical waveguides are one of the leading candidates for the future realisation of large-scale quantum computation. One of the central challenges in realising this goal is simultaneously minimising loss whilst maximising interferometric visibility within waveguide circuits. One approach is to reduce circuit complexity and depth. A major constraint in most planar waveguide systems is that beamsplitter transformations between distant optical modes require numerous intermediate SWAP operations to couple them into nearest neighbour proximity, each of which introduces loss and scattering. Here, we propose a 3D architecture which can significantly mitigate this problem by geometrically bypassing trivial intermediate operations. We demonstrate the viability of this concept by considering a worst-case 2D scenario, where we interfere the two most distant optical modes in a planar structure. Using femtosecond laser direct-writing technology we experimentally construct a 2D architecture to implement Hong-Ou-Mandel interference between its most distant modes, and a 3D one with corresponding physical dimensions, demonstrating significant improvement in both fidelity and efficiency in the latter case. In addition to improving fidelity and efficiency of individual non-adjacent beamsplitter operations, this approach provides an avenue for reducing the optical depth of circuits comprising complex arrays of beamsplitter operations.

4.
Phys Rev Lett ; 127(14): 147401, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34652196

ABSTRACT

Symmetries play a major role in identifying topological phases of matter and in establishing a direct connection between protected edge states and topological bulk invariants via the bulk-boundary correspondence. One-dimensional lattices are deemed to be protected by chiral symmetry, exhibiting quantized Zak phases and protected edge states, but not for all cases. Here, we experimentally realize an extended Su-Schrieffer-Heeger model with broken chiral symmetry by engineering one-dimensional zigzag photonic lattices, where the long-range hopping breaks chiral symmetry but ensures the existence of inversion symmetry. By the averaged mean displacement method, we detect topological invariants directly in the bulk through the continuous-time quantum walk of photons. Our results demonstrate that inversion symmetry protects the quantized Zak phase but edge states can disappear in the topological nontrivial phase, thus breaking the conventional bulk-boundary correspondence. Our photonic lattice provides a useful platform to study the interplay among topological phases, symmetries, and the bulk-boundary correspondence.

5.
Light Sci Appl ; 10(1): 173, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34462419

ABSTRACT

Higher-order topological insulators, as newly found non-trivial materials and structures, possess topological phases beyond the conventional bulk-boundary correspondence. In previous studies, in-gap boundary states such as the corner states were regarded as conclusive evidence for the emergence of higher-order topological insulators. Here, we present an experimental observation of a photonic higher-order topological insulator with corner states embedded into the bulk spectrum, denoted as the higher-order topological bound states in the continuum. Especially, we propose and experimentally demonstrate a new way to identify topological corner states by exciting them separately from the bulk states with photonic quantum superposition states. Our results extend the topological bound states in the continuum into higher-order cases, providing an unprecedented mechanism to achieve robust and localized states in a bulk spectrum. More importantly, our experiments exhibit the advantage of using the time evolution of quantum superposition states to identify topological corner modes, which may shed light on future exploration between quantum dynamics and higher-order topological photonics.

6.
Opt Lett ; 46(7): 1584-1587, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33793493

ABSTRACT

The inevitable noise and decoherence in the quantum circuit hinder its scalable development, so quantum error correction and quantumness protection for multiple controllable qubits system are necessary. The flatband in the dispersion relation, based on its inherent locality and high degenerate energy band structure, shows non-diffractive transport properties in the line spectrum and has the potential possibility to protect quantum resources in special lattices. The pioneer work has proved that the topologically boundary state is robust to protect the quantumness from disorder and perturbation, which inspires that quantumness can be protected anywhere in a periodic structure, including the boundary state and bulk state. Here, we show the topological protection of quantum resources with different state combinations in a sawtooth lattice. Photons can be localized at any degenerate eigenmode, and the localized effect is determined by only one parameter, without additional modulations. We show a high violation of Cauchy-Schwarz inequality up to 35 standard deviations by measuring cross correlation and auto-correlation of correlated photons. We verify that the topological protection is robust to different wavelengths of correlated photons. Our results suggest an alternative way of exploring topological protection in flatband and bulk state, demonstrating the powerful ability of topological photonics to protect quantum resources.

7.
Phys Rev Lett ; 124(15): 153601, 2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32357035

ABSTRACT

Vector vortex beams simultaneously carrying spin and orbital angular momentum of light promise additional degrees of freedom for modern optics and emerging resources for both classical and quantum information technologies. The inherently infinite dimensions can be exploited to enhance data capacity for sustaining the unprecedented growth in big data and internet traffic and can be encoded to build quantum computing machines in high-dimensional Hilbert space. So far, much progress has been made in the emission of vector vortex beams from a chip surface into free space; however, the generation of vector vortex beams inside a photonic chip has not been realized yet. Here, we demonstrate the first vector vortex beam emitter embedded in a photonic chip by using femtosecond laser direct writing. We achieve a conversion of vector vortex beams with an efficiency up to 30% and scalar vortex beams with an efficiency up to 74% from Gaussian beams. We also present an expanded coupled-mode model for understanding the mode conversion and the influence of the imperfection in fabrication. The fashion of embedded generation makes vector vortex beams directly ready for further transmission, manipulation, and emission without any additional interconnection. Together with the ability to be integrated as an array, our results may enable vector vortex beams to become accessible inside a photonic chip for high-capacity communication and high-dimensional quantum information processing.

8.
Sci Adv ; 6(5): eaay5853, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32064352

ABSTRACT

The subset sum problem (SSP) is a typical nondeterministic-polynomial-time (NP)-complete problem that is hard to solve efficiently in time with conventional computers. Photons have the unique features of high propagation speed, strong robustness, and low detectable energy level and therefore can be promising candidates to meet the challenge. Here, we present a scalable chip built-in photonic computer to efficiently solve the SSP. We map the problem into a three-dimensional waveguide network through a femtosecond laser direct writing technique. We show that the photons sufficiently dissipate into the networks and search for solutions in parallel. In the case of successive primes, our approach exhibits a dominant superiority in time consumption even compared with supercomputers. Our results confirm the ability of light to realize computations intractable for conventional computers, and suggest the SSP as a good benchmarking platform for the race between photonic and conventional computers on the way toward "photonic supremacy."

9.
Sci Bull (Beijing) ; 65(4): 286-292, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-36659093

ABSTRACT

Quantum process tomography is often used to completely characterize an unknown quantum process. However, it may lead to an unphysical process matrix, which will cause the loss of information with respect to the tomography result. Convex optimization, widely used in machine learning, is able to generate a global optimum that best fits the raw data while keeping the process tomography in a legitimate region. Only by correctly revealing the original action of the process can we seek deeper into its properties like its phase transition and its Hamiltonian. Here, we reconstruct the seawater channel using convex optimization and further test it on the seven fundamental gates. We compare our method to the standard-inversion and norm-optimization approaches using the cost function value and our proposed state deviation. The advantages convince that our method enables a more precise and robust estimation of the elements of the process matrix with less demands on preliminary resources. In addition, we examine on a set of non-unitary channels and the reconstructions reach up to 99.5% accuracy. Our method offers a more universal tool for further analyses on the components of the quantum channels and we believe that the crossover between quantum process tomography and convex optimization may help us move forward to machine learning of quantum channels.

10.
Adv Mater ; 31(49): e1905624, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31613398

ABSTRACT

Topological phases play a novel and fundamental role in matter and display extraordinary robustness to smooth changes in material parameters or disorder. A crossover between topological material and quantum information may lead to inherent fault-tolerant quantum simulations and quantum computing. Quantum features may be preserved by being encoded among topological structures of physical evolution systems. This requires stimulation, manipulation, and observation of topological phenomena at the single quantum particle level, which has not, however, yet been realized. It is asked whether the quantum features of single photons can be preserved in topological structures. The boundary states are experimentally observed at the genuine single-photon level and the performance of the topological phase is demonstrated to protect the quantum features against diffusion-induced decoherence in coupled waveguides and noise decoherence from the ambient environment. Compatibility between macroscopic topological states and microscopic single photons in the ambient environment is thus confirmed, leading to a new avenue to "quantum topological photonics" and providing more new possibilities for quantum materials and quantum technologies.

11.
Phys Rev Lett ; 122(1): 013903, 2019 Jan 11.
Article in English | MEDLINE | ID: mdl-31012669

ABSTRACT

The gaps separating two different states widely exist in various physical systems: from the electrons in periodic lattices to the analogs in photonic, phononic, plasmonic systems, and even quasicrystals. Recently, a thermalization gap, an inaccessible range of photon statistics, was proposed for light in disordered structures [Nat. Phys. 11, 930 (2015)NPAHAX1745-247310.1038/nphys3482], which is intrinsically induced by the disorder-immune chiral symmetry and can be reflected by the photon statistics. The lattice topology was further identified as a decisive role in determining the photon statistics when the chiral symmetry is satisfied. Being very distinct from one-dimensional lattices, the photon statistics in ring lattices are dictated by its parity, i.e., odd or even sited. Here, we for the first time experimentally observe a parity-induced thermalization gap in strongly disordered ring photonic structures. In a limited scale, though the light tends to be localized, we are still able to find clear evidence of the parity-dependent disorder-immune chiral symmetry and the resulting thermalization gap by measuring photon statistics, while strong disorder-induced Anderson localization overwhelms such a phenomenon in larger-scale structures. Our results shed new light on the relation among symmetry, disorder, and localization, and may inspire new resources and artificial devices for information processing and quantum control on a photonic chip.

12.
Opt Express ; 27(5): 5982-5989, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30876192

ABSTRACT

Quantum key distribution (QKD), harnessing quantum physics and optoelectronics, may promise unconditionally secure information exchange in theory. Recently, theoretical and experimental advances in measurement-device-independent (MDI)-QKD have successfully closed the physical back door in detection terminals. However, the issues of scalability, stability, cost and loss prevent QKD systems from widespread application in practice. Here, we propose and experimentally demonstrate a solution to build a star-topology quantum access network with an integrated server. By using femtosecond laser direct writing techniques, we construct integrated circuits for all the elements of Bell state analyzer together and are able to integrate 10 such analyzer structures on a single photonic chip. The measured high-visibility Bell state analysis suggests the integrated server as a promising platform for the practical application of MDI-QKD network.

13.
Research (Wash D C) ; 2019: 3474305, 2019.
Article in English | MEDLINE | ID: mdl-31912033

ABSTRACT

In quantum theory, the retrodiction problem is not as clear as its classical counterpart because of the uncertainty principle of quantum mechanics. In classical physics, the measurement outcomes of the present state can be used directly for predicting the future events and inferring the past events which is known as retrodiction. However, as a probabilistic theory, quantum-mechanical retrodiction is a nontrivial problem that has been investigated for a long time, of which the Mean King Problem is one of the most extensively studied issues. Here, we present the first experimental test of a variant of the Mean King Problem, which has a more stringent regulation and is termed "Tracking the King." We demonstrate that Alice, by harnessing the shared entanglement and controlled-not gate, can successfully retrodict the choice of King's measurement without knowing any measurement outcome. Our results also provide a counterintuitive quantum communication to deliver information hidden in the choice of measurement.

14.
Phys Rev Lett ; 121(23): 233602, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30576214

ABSTRACT

Twisted light carrying orbital angular momentum (OAM) provides an additional degree of freedom for modern optics and an emerging resource for both classical and quantum information technologies. Its inherently infinite dimensions can potentially be exploited by using mode multiplexing to enhance data capacity for sustaining the unprecedented growth in big data and internet traffic and can be encoded to build large-scale quantum computing machines in high-dimensional Hilbert space. While the emission of twisted light from the surface of integrated devices to free space has been widely investigated, the transmission and processing inside a photonic chip remain to be addressed. Here, we present the first laser-direct-written waveguide being capable of supporting OAM modes and experimentally demonstrate a faithful mapping of twisted light into and out of a photonic chip. The states OAM_{0}, OAM_{-1}, OAM_{+1}, and their superpositions can transmit through the photonic chip with a total efficiency up to 60% with minimal crosstalk. In addition, we present the transmission of quantum twisted light states of single photons and measure the output states with single-photon imaging. Our results may add OAM as a new degree of freedom to be transmitted and manipulated in a photonic chip for high-capacity communication and high-dimensional quantum information processing.

15.
Phys Rev Lett ; 120(24): 240501, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29956972

ABSTRACT

Quantum information technologies provide promising applications in communication and computation, while machine learning has become a powerful technique for extracting meaningful structures in "big data." A crossover between quantum information and machine learning represents a new interdisciplinary area stimulating progress in both fields. Traditionally, a quantum state is characterized by quantum-state tomography, which is a resource-consuming process when scaled up. Here we experimentally demonstrate a machine-learning approach to construct a quantum-state classifier for identifying the separability of quantum states. We show that it is possible to experimentally train an artificial neural network to efficiently learn and classify quantum states, without the need of obtaining the full information of the states. We also show how adding a hidden layer of neurons to the neural network can significantly boost the performance of the state classifier. These results shed new light on how classification of quantum states can be achieved with limited resources, and represent a step towards machine-learning-based applications in quantum information processing.

16.
Opt Express ; 24(12): 12607-16, 2016 Jun 13.
Article in English | MEDLINE | ID: mdl-27410282

ABSTRACT

Quantum interference and quantum correlation, as two main features of quantum optics, play an essential role in quantum information applications, such as multi-particle quantum walk and boson sampling. While many experimental demonstrations have been done in one-dimensional waveguide arrays, it remains unexplored in higher dimensions due to tight requirement of manipulating and detecting photons in large-scale. Here, we experimentally observe non-classical correlation of two identical photons in a fully coupled two-dimensional structure, i.e. photonic lattice manufactured by three-dimensional femtosecond laser writing. Photon interference consists of 36 Hong-Ou-Mandel interference and 9 bunching. The overlap between measured and simulated distribution is up to 0.890 ± 0.001. Clear photon correlation is observed in the two-dimensional photonic lattice. Combining with controllably engineered disorder, our results open new perspectives towards large-scale implementation of quantum simulation on integrated photonic chips.

SELECTION OF CITATIONS
SEARCH DETAIL
...