Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 6(7): e1743, 2012.
Article in English | MEDLINE | ID: mdl-22848772

ABSTRACT

INTRODUCTION: Mass vaccinations are a main strategy in the deployment of oral cholera vaccines. Campaigns avoid giving vaccine to pregnant women because of the absence of safety data of the killed whole-cell oral cholera (rBS-WC) vaccine. Balancing this concern is the known higher risk of cholera and of complications of pregnancy should cholera occur in these women, as well as the lack of expected adverse events from a killed oral bacterial vaccine. METHODOLOGY/PRINCIPAL FINDINGS: From January to February 2009, a mass rBS-WC vaccination campaign of persons over two years of age was conducted in an urban and a rural area (population 51,151) in Zanzibar. Pregnant women were advised not to participate in the campaign. More than nine months after the last dose of the vaccine was administered, we visited all women between 15 and 50 years of age living in the study area. The outcome of pregnancies that were inadvertently exposed to at least one oral cholera vaccine dose and those that were not exposed was evaluated. 13,736 (94%) of the target women in the study site were interviewed. 1,151 (79%) of the 1,453 deliveries in 2009 occurred during the period when foetal exposure to the vaccine could have occurred. 955 (83%) out of these 1,151 mothers had not been vaccinated; the remaining 196 (17%) mothers had received at least one dose of the oral cholera vaccine. There were no statistically significant differences in the odds ratios for birth outcomes among the exposed and unexposed pregnancies. CONCLUSIONS/SIGNIFICANCE: We found no statistically significant evidence of a harmful effect of gestational exposure to the rBS-WC vaccine. These findings, along with the absence of a rational basis for expecting a risk from this killed oral bacterial vaccine, are reassuring but the study had insufficient power to detect infrequent events. TRIAL REGISTRATION: ClinicalTrials.gov NCT00709410.


Subject(s)
Cholera Toxin/adverse effects , Cholera Toxin/immunology , Cholera Vaccines/adverse effects , Cholera Vaccines/immunology , Adolescent , Adult , Child , Child, Preschool , Cholera Toxin/administration & dosage , Cholera Toxin/genetics , Cholera Vaccines/administration & dosage , Drug-Related Side Effects and Adverse Reactions/epidemiology , Female , Humans , Infant, Newborn , Male , Middle Aged , Pregnancy , Tanzania , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/immunology , Young Adult
2.
PLoS Negl Trop Dis ; 5(1): e952, 2011 Jan 25.
Article in English | MEDLINE | ID: mdl-21283614

ABSTRACT

INTRODUCTION: The outbreak of cholera in Zimbabwe intensified interest in the control and prevention of cholera. While there is agreement that safe water, sanitation, and personal hygiene are ideal for the long term control of cholera, there is controversy about the role of newer approaches such as oral cholera vaccines (OCVs). In October 2009 the Strategic Advisory Group of Experts advised the World Health Organization to consider reactive vaccination campaigns in response to large cholera outbreaks. To evaluate the potential benefit of this pivotal change in WHO policy, we used existing data from cholera outbreaks to simulate the number of cholera cases preventable by reactive mass vaccination. METHODS: Datasets of cholera outbreaks from three sites with varying cholera endemicity--Zimbabwe, Kolkata (India), and Zanzibar (Tanzania)--were analysed to estimate the number of cholera cases preventable under differing response times, vaccine coverage, and vaccine doses. FINDINGS: The large cholera outbreak in Zimbabwe started in mid August 2008 and by July 2009, 98,591 cholera cases had been reported with 4,288 deaths attributed to cholera. If a rapid response had taken place and half of the population had been vaccinated once the first 400 cases had occurred, as many as 34,900 (40%) cholera cases and 1,695 deaths (40%) could have been prevented. In the sites with endemic cholera, Kolkata and Zanzibar, a significant number of cases could have been prevented but the impact would have been less dramatic. A brisk response is required for outbreaks with the majority of cases occurring during the early weeks. Even a delayed response can save a substantial number of cases and deaths in long, drawn-out outbreaks. If circumstances prevent a rapid response there are good reasons to roll out cholera mass vaccination campaigns well into the outbreak. Once a substantial proportion of a population is vaccinated, outbreaks in subsequent years may be reduced if not prevented. A single dose vaccine would be of advantage in short, small outbreaks. CONCLUSIONS: We show that reactive vaccine use can prevent cholera cases and is a rational response to cholera outbreaks in endemic and non-endemic settings. In large and long outbreaks a reactive vaccination with a two-dose vaccine can prevent a substantial proportion of cases. To make mass vaccination campaigns successful, it would be essential to agree when to implement reactive vaccination campaigns and to have a dynamic and determined response team that is familiar with the logistic challenges on standby. Most importantly, the decision makers in donor and recipient countries have to be convinced of the benefit of reactive cholera vaccinations.


Subject(s)
Cholera Vaccines/administration & dosage , Cholera Vaccines/immunology , Cholera/prevention & control , Disease Outbreaks/prevention & control , Mass Vaccination/methods , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Computer Simulation , Female , Humans , India/epidemiology , Infant , Infant, Newborn , Male , Middle Aged , Models, Statistical , Tanzania/epidemiology , Young Adult , Zimbabwe/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...