Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 14(8)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37623380

ABSTRACT

Polarized light-based navigation in insects is facilitated by a polarization-sensitive part of the eye, the dorsal rim area (DRA). Existing methods to study the anatomy of the DRA are destructive and time-consuming. We presented a novel method for DRA localization, dissection, and measurement using 3D volumetric images from X-ray micro-computed tomography in combination with 2D photographs. Applying the method on size-polymorphic buff-tailed bumblebees, Bombus terrestris, we found that the DRA was easily obtainable from photographs of the dorsal eye region. Allometric analysis of the DRA in relation to body size in B. terrestris showed that it increased with the body size but not at the same rate. By localizing the DRA of individual bumblebees, we could also perform individual-level descriptions and inter-individual comparisons between the ommatidial structures (lens, crystalline cones, rhabdoms) of three different eye regions (DRA, non-DRA, proximate to DRA). One feature distinct to the bumblebee DRA was the smaller dimension of the crystalline cones in comparison to other regions of the eye. Using our novel methodology, we provide the first individual-level description of DRA ommatidial features and a comparison of how the DRA varies with body size in bumblebees.

2.
Insects ; 12(12)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34940152

ABSTRACT

In solitary insect pollinators such as butterflies, sensory systems must be adapted for multiple tasks, including nectar foraging, mate-finding, and locating host-plants. As a result, the energetic investments between sensory organs can vary at the intraspecific level and even among sexes. To date, little is known about how these investments are distributed between sensory systems and how it varies among individuals of different sex. We performed a comprehensive allometric study on males and females of the butterfly Pieris napi where we measured the sizes and other parameters of sensory traits including eyes, antennae, proboscis, and wings. Our findings show that among all the sensory traits measured, only antenna and wing size have an allometric relationship with body size and that the energetic investment in different sensory systems varies between males and females. Moreover, males had absolutely larger antennae and eyes, indicating that they invest more energy in these organs than females of the same body size. Overall, the findings of this study reveal that the size of sensory traits in P. napi are not necessarily related to body size and raises questions about other factors that drive sensory trait investment in this species and in other insect pollinators in general.

3.
J Microsc ; 283(1): 29-40, 2021 07.
Article in English | MEDLINE | ID: mdl-33822371

ABSTRACT

Imaging the visual systems of bumblebees and other pollinating insects may increase understanding of their dependence on specific habitats and how they will be affected by climate change. Current high-resolution imaging methods are either limited to two dimensions (light- and electron microscopy) or have limited access (synchrotron radiation x-ray tomography). For x-ray imaging, heavy metal stains are often used to increase contrast. Here, we present micron-resolution imaging of compound eyes of buff-tailed bumblebees (Bombus terrestris) using a table-top x-ray nanotomography (nano-CT) system. By propagation-based phase-contrast imaging, the use of stains was avoided and the microanatomy could more accurately be reconstructed than in samples stained with phosphotungstic acid or osmium tetroxide. The findings in the nano-CT images of the compound eye were confirmed by comparisons with light- and transmission electron microscopy of the same sample and finally, comparisons to synchrotron radiation tomography as well as to a commercial micro-CT system were done.


Subject(s)
Laboratories , Osmium Tetroxide , Animals , Bees , Microscopy, Phase-Contrast/instrumentation , Synchrotrons , Tomography, X-Ray Computed/methods , X-Ray Microtomography/methods
4.
PLoS Biol ; 16(12): e3000074, 2018 12.
Article in English | MEDLINE | ID: mdl-30543636

ABSTRACT

Phenomics has the potential to facilitate significant advances in biology but requires the development of high-throughput technologies capable of generating and analysing high-dimensional data. There are significant challenges associated with building such technologies, not least those required for investigating dynamic processes such as embryonic development, during which high rates of temporal, spatial, and functional change are inherently difficult to capture. Here, we present EmbryoPhenomics, an accessible high-throughput platform for phenomics in aquatic embryos comprising an Open-source Video Microscope (OpenVIM) that produces high-resolution videos of multiple embryos under tightly controlled environmental conditions. These videos are then analysed by the Python package Embryo Computer Vision (EmbryoCV), which extracts phenomic data for morphological, physiological, behavioural, and proxy traits during the process of embryonic development. We demonstrate the broad-scale applicability of EmbryoPhenomics in a series of experiments assessing chronic, acute, and multistressor responses to environmental change (temperature and salinity) in >30 million images of >600 embryos of two species with markedly different patterns of development-the pond snail Radix balthica and the marine amphipod Orchestia gammarellus. The challenge of phenomics is significant but so too are the rewards, and it is particularly relevant to the urgent task of assessing complex organismal responses to current rates of environmental change. EmbryoPhenomics can acquire and process data capturing functional, temporal, and spatial responses in the earliest, most dynamic life stages and is potentially game changing for those interested in studying development and phenomics more widely.


Subject(s)
Biological Variation, Population/physiology , High-Throughput Screening Assays/methods , Microscopy, Video/methods , Animals , Biological Variation, Population/genetics , Embryonic Development/physiology , Humans , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...