Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 15(7): 3337-3344, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36722749

ABSTRACT

Carbon dots (CDs) with deep-blue thermally activated delayed fluorescence (TADF) of more than 2 s were developed, exhibiting the longest lifetime to date. In contrast to the established deep-blue TADF systems, this developed CD-based system (BNCDs) could be facilely and effectively synthesized, and more impressively, the emission lasted for more than 16 s (to the naked eye). XRD, TEM, FT-IR, and XPS analyses were conducted, and structural characterizations indicated that the CDs formed hydrogen bonding with B2O3. The temperature-dependent photoluminescence (PL) spectra demonstrated the existence of thermally activated delayed fluorescence in the composite. Further studies revealed that the B2O3 matrix restricted the vibration and rotation of CD chromophores and suppressed the non-radiative recombination of triplet excitons. Last but not least, potential applications in bioimaging, anti-counterfeiting, and information encryption were also explored. This work can provide new insights for developing metal-free and ultralong lifetime afterglow materials.

2.
ACS Appl Mater Interfaces ; 14(1): 1609-1614, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34962384

ABSTRACT

Electronic transport through molecular-scale devices has been studied extensively for its extraordinary dimension superiority. Assembling such devices into large-scale functional circuits is crucial since the molecular tunnel junctions must be reliable, stable and reproducible during technological applications. In ideal circumstances, the device architecture should be designed such that the metal-molecule-metal (MMM) junctions can be analyzed by the more sensitive four point probe system. In this paper, we expound a delicate method to manufacture molecular junctions, which show excellent stability and reproducibility with high yields (>91 per cent). We form self-assembled monolayers (SAMs) on conductive Au thin film by microcontact printing and then generate robust covalently bound metal thin film electrodes on top of the SAMs by selective electroless deposition. Following MMM junction formation, a photoresist is coated and wells are opened on each feature by lithography. Then, Au thin film, as a permanent top electrode, is deposited into the photolithographically defined well. Conductivity analyzations were carried out on the 50 µm square junctions by the four point probe measurement, and the results showed reproducible tunneling I-V characteristics. This method reveals an approach not only offering a unique vehicle to investigate the electrical properties of molecule ensembles in MMMs, but also making a significant step toward MMM applications at the device level.

3.
Sci Rep ; 6: 27765, 2016 06 16.
Article in English | MEDLINE | ID: mdl-27306196

ABSTRACT

Sb4O5Cl2 hollow microspheres with self-narrowed bandgap and optimized photocatalytic performances are synthesized via a facile template-free method. It is found that the crystal structure and morphology of Sb4O5Cl2 crystallites are strongly dependent on the pH values of precursors. Nano-sized irregular-cuboids assembled Sb4O5Cl2 micro-particles and hollow microspheres can be synthesized at pH 1 and 2, whereas individual Sb4O5Cl2 micro-belts become to form when the pH is higher than 3. The irregular-cuboids assembled Sb4O5Cl2 micro-particles and hollow microspheres exhibit self-narrowed bandgap and higher light absorption ability compared with individual Sb4O5Cl2 micro-belts. The photoelectrochemical measurements show that the assembled Sb4O5Cl2 hollow microsphere crystallites prepared at pH 2 exhibit enhanced carrier density, improved separation efficiency of electron-hole pairs and decreased electron-transfer resistance. As a result, the irregular-cuboids assembled Sb4O5Cl2 hollow microspheres prepared at pH = 2 exhibit the highest photocatalytic activity for the degradation of gaseous iso-propanol (IPA) and Rhodamine B (RhB) aqueous solution. The good photocatalytic activity of Sb4O5Cl2 sample prepared at pH = 2 may be caused by the synergistic effect of its higher light absorption, the decreased electron-transfer resistance, the suppressed recombination of photogenerated electrons and holes, and the increased surface area.

4.
Nanomaterials (Basel) ; 6(12)2016 Dec 14.
Article in English | MEDLINE | ID: mdl-28335368

ABSTRACT

Hierarchical tungsten oxide assemblies such as spindle-like structures, flowers with sharp petals, nanowires and regular hexagonal structures are successfully synthesized via a solvothermal reduction method by simply adjusting the reaction conditions. On the basis of the experimental results, it is determined that the reaction time significantly influences the phase transition, microstructure and photocatalytic activity of the prepared samples. The possible mechanisms for the morphology evolution process have been systematically proposed. Moreover, the as-prepared products exhibit significant morphology-dependent photocatalytic activity. The flower-like W18O49 prepared at 6 h possesses a large specific surface area (150.1 m²âˆ™g-1), improved separation efficiency of electron-hole pairs and decreased electron-transfer resistance according to the photoelectrochemical measurements. As a result, the flower-like W18O49 prepared at 6 h exhibits the highest photocatalytic activity for the degradation of Methyl orange aqueous solution. The radical trap experiments showed that the degradation of MO was driven mainly by the participation of h⁺ and •O2- radicals.

SELECTION OF CITATIONS
SEARCH DETAIL
...