Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 20(6): 3398-3403, 2020 06 01.
Article in English | MEDLINE | ID: mdl-31748032

ABSTRACT

Quantum dots (QDs) are semiconducting materials which have a wide array of applications starting from semiconducting devices, in humidity and pressure sensors and in medical imaging including cancer therapy. In the present study, cadmium telluride (CdTe) QDs were synthesized by a biological method using yeast cells, Saccharomyces cerevisiae in modified Czapek's medium. QDs were characterized by transmission electron microscopy and X-ray diffraction. Cancer cells were treated with 2, 4, 8 and 16 µM concentrations of CdTe QDs for 24 h. The anti-proliferative activity was determined by using MTT assay, by evaluating the production of reactive oxygen species (ROS), and also by nuclear apoptosis and cell cycle analysis using a flow cytometer against human prostate carcinoma cell line PC-3. The size of the CdTe QDs was approximately 2 nm. In vitro anti-proliferative study showed that CdTe QDs induced cell death and nuclear apoptosis in a dosedependent manner. CdTe QDs induced significant increase in ROS level in PC-3 cells which was dose-dependent. Moreover, CdTe also arrested growth of PC-3 cells in the G2/M phase of the cell cycle. This study elucidates the apoptotic activity of CdTe QDs on prostate carcinoma which could provide useful insights to researchers for its clinical application.


Subject(s)
Cadmium Compounds , Prostatic Neoplasms , Quantum Dots , Cadmium Compounds/pharmacology , Cell Line , Humans , Male , Tellurium/pharmacology
2.
EXCLI J ; 15: 54-63, 2016.
Article in English | MEDLINE | ID: mdl-27047318

ABSTRACT

Quantum dots (QDs), semiconducting materials have potential applications in the field of electronic and biomedical applications including cancer therapy. In present study, cadmium selenide (CdSe) QDs were synthesized by chemical method. Octadecene was used as non-coordinating solvent which facilitated the formation of colloidal solutions of nanoparticles. CdSe QDs were characterized by UV-vis spectrometer and transmission electron microscope (TEM). The size measured by TEM was varied between 2-5 nm depending upon temperature. The cytotoxic activity of QDs was monitored by MTT assay, nuclear condensation, ROS activity and DNA fragmentation assay on human lung epithelial A549 cell line. Cells were treated with different concentrations of varying size of CdSe QDs for 24 h. CdSe QDs induced significant (p < 0.05) dose dependent cytotoxicity and this was comparable to the sizes of particles. Smaller particles were more cytotoxic to the large particles. Fluorescence microscopic analysis revealed that QDs induced oxidative stress generating significant ROS level and consequently, induced nuclear condensation and DNA fragmentation. Study suggested the cytotoxicity of CdSe QDs via ROS generation and DNA fragmentation depending upon particles size.

SELECTION OF CITATIONS
SEARCH DETAIL
...