Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(13)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202732

ABSTRACT

The establishment of plant-fungus mutualistic interaction requires bidirectional molecular crosstalk. Therefore, the analysis of the interacting organisms secretomes would help to understand how such relationships are established. Here, a gel-free shotgun proteomics approach was used to identify the secreted proteins of the plant Arabidopsis thaliana and the mutualistic fungus Trichoderma atroviride during their interaction. A total of 126 proteins of Arabidopsis and 1027 of T. atroviride were identified. Among them, 118 and 780 were differentially modulated, respectively. Bioinformatic analysis unveiled that both organisms' secretomes were enriched with enzymes. In T. atroviride, glycosidases, aspartic endopeptidases, and dehydrogenases increased in response to Arabidopsis. Additionally, amidases, protein-serine/threonine kinases, and hydro-lyases showed decreased levels. Furthermore, peroxidases, cysteine endopeptidases, and enzymes related to the catabolism of secondary metabolites increased in the plant secretome. In contrast, pathogenesis-related proteins and protease inhibitors decreased in response to the fungus. Notably, the glutamate:glyoxylate aminotransferase GGAT1 was secreted by Arabidopsis during its interaction with T. atroviride. Our study showed that GGAT1 is partially required for plant growth stimulation and on the induction of the plant systemic resistance by T. atroviride. Additionally, GGAT1 seems to participate in the negative regulation of the plant systemic resistance against B. cinerea through a mechanism involving H2O2 production.


Subject(s)
Arabidopsis/metabolism , Arabidopsis/microbiology , Botrytis , Disease Resistance , Host-Pathogen Interactions , Metabolomics , Plant Diseases/microbiology , Trichoderma , Computational Biology/methods , Glutamic Acid/metabolism , Metabolomics/methods , Phenotype , Plant Development , Symbiosis , Transaminases/genetics , Transaminases/metabolism
2.
PLoS One ; 14(2): e0211904, 2019.
Article in English | MEDLINE | ID: mdl-30763337

ABSTRACT

Azospirillum brasilense is one of the most studied species of diverse agronomic plants worldwide. The benefits conferred to plants inoculated with Azospirillum have been primarily attributed to its capacity to fix atmospheric nitrogen and synthesize phytohormones, especially indole-3-acetic acid (IAA). The principal pathway for IAA synthesis involves the intermediate metabolite indole pyruvic acid. Successful colonization of plants by Azospirillum species is fundamental to the ability of these bacteria to promote the beneficial effects observed in plants. Biofilm formation is an essential step in this process and involves interactions with the host plant. In this study, the tyrR gene was cloned, and the translated product was observed to exhibit homology to TyrR protein, a NtrC/NifA-type activator. Structural studies of TyrR identified three putative domains, including a domain containing binding sites for aromatic amino acids in the N-terminus, a central AAA+ ATPase domain, and a helix-turn-helix DNA binding motif domain in the C-terminus, which binds DNA sequences in promoter-operator regions. In addition, a bioinformatic analysis of promoter sequences in A. brasilense Sp7 genome revealed that putative promoters encompass one to three TyrR boxes in genes predicted to be regulated by TyrR. To gain insight into the phenotypes regulated by TyrR, a tyrR-deficient strain derived from A. brasilense Sp7, named A. brasilense 2116 and a complemented 2116 strain harboring a plasmid carrying the tyrR gene were constructed. The observed phenotypes indicated that the putative transcriptional regulator TyrR is involved in biofilm production and is responsible for regulating the utilization of D-alanine as carbon source. In addition, TyrR was observed to be absolutely required for transcriptional regulation of the gene dadA encoding a D-amino acid dehydrogenase. The data suggested that TyrR may play a major role in the regulation of genes encoding a glucosyl transferase, essential signaling proteins, and amino acids transporters.


Subject(s)
Aspergillus , Biofilms/growth & development , Fungal Proteins , Transcription Factors , Aspergillus/chemistry , Aspergillus/physiology , D-Amino-Acid Oxidase/biosynthesis , D-Amino-Acid Oxidase/genetics , Fungal Proteins/chemistry , Fungal Proteins/genetics , Helix-Turn-Helix Motifs , Protein Domains , Response Elements , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic/physiology
3.
Res Microbiol ; 167(3): 190-201, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26708984

ABSTRACT

In bacteria, proteins containing GGDEF domains are involved in production of the second messenger c-di-GMP. Here we report that the cdgA gene encoding diguanylate cyclase A (CdgA) is involved in biofilm formation and exopolysaccharide (EPS) production in Azospirillum brasilense Sp7. Biofilm quantification using crystal violet staining revealed that inactivation of cdgA decreased biofilm formation. In addition, confocal laser scanning microscopy analysis of green-fluorescent protein-labeled bacteria showed that, during static growth, the biofilms had differential levels of development: bacteria harboring a cdgA mutation exhibited biofilms with considerably reduced thickness compared with those of the wild-type Sp7 strain. Moreover, DNA-specific staining and treatment with DNase I, and epifluorescence studies demonstrated that extracellular DNA and EPS are components of the biofilm matrix in Azospirillum. After expression and purification of the CdgA protein, diguanylate cyclase activity was detected. The enzymatic activity of CdgA-producing cyclic c-di-GMP was determined using GTP as a substrate and flavin adenine dinucleotide (FAD(+)) and Mg(2)(+) as cofactors. Together, our results revealed that A. brasilense possesses a functional c-di-GMP biosynthesis pathway.


Subject(s)
Azospirillum brasilense/enzymology , Azospirillum brasilense/physiology , Biofilms/growth & development , Cyclic GMP/analogs & derivatives , Escherichia coli Proteins/metabolism , Phosphorus-Oxygen Lyases/metabolism , Polysaccharides, Bacterial/biosynthesis , Azospirillum brasilense/genetics , Bacteriological Techniques , Coenzymes/metabolism , Cyclic GMP/metabolism , Escherichia coli Proteins/isolation & purification , Flavin-Adenine Dinucleotide/metabolism , Guanosine Triphosphate/metabolism , Magnesium/metabolism , Microscopy, Confocal , Phosphorus-Oxygen Lyases/isolation & purification , Staining and Labeling
4.
Antonie Van Leeuwenhoek ; 107(6): 1501-17, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25842039

ABSTRACT

Plant growth-promoting bacteria of the genus Azospirillum are present in the rhizosphere and as endophytes of many crops. In this research we studied 40 Azospirillum strains isolated from different plants and geographic regions. They were first characterized by 16S rDNA restriction analysis, and their phylogenetic position was established by sequencing the genes 16S rDNA, ipdC, hisC1, and hisC2. The latter three genes are involved in the indole-3-pyruvic acid (IPyA) biosynthesis pathway of indole-3-acetic acid (IAA). Furthermore, the suitability of the 16S-23S rDNA intergenic spacer sequence (IGS) for the differentiation of closely related Azospirillum taxa and development of PCR protocols allows for specific detection of strains. The IGS-RFLP analysis enabled intraspecies differentiation, particularly of Azospirillum brasilense and Azospirillum lipoferum strains. Results demonstrated that the ipdC, hisC1, and hisC2 genes are highly conserved in all the assessed A. brasilense isolates, suggesting that these genes can be used as an alternative phylogenetic marker. In addition, IAA production determined by HPLC ranged from 0.17 to 98.2 µg mg(-1) protein. Southern hybridization with the A. brasilense ipdC gene probe did not show, a hybridization signal with A. lipoferum, Azospirillum amazonense, Azospirillum halopreferans and Azospirillum irakense genomic DNA. This suggests that these species produce IAA by other pathways. Because IAA is mainly synthesized via the IPyA pathway in A. brasilense strains, a species that is used worldwide in agriculture, the identification of ipdC, hisC1, and hisC2 genes by PCR may be suitable for selecting exploitable strains.


Subject(s)
Azospirillum brasilense/classification , Azospirillum brasilense/genetics , Biosynthetic Pathways/genetics , Genes, Bacterial , Indoleacetic Acids/metabolism , Azospirillum brasilense/metabolism , Blotting, Southern , Chromatography, High Pressure Liquid , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer , Molecular Sequence Data , Phylogeny , Plants/microbiology , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...