Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(13): 11473-11490, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35415333

ABSTRACT

The present work reports the fabrication of polyindole (PIN)/Ni1-x Zn x Fe2O4 (x = 0, 0.5, 1) nanocomposites as efficient electromagnetic wave absorbers by a facile in situ emulsion polymerization method for the first time. The samples were characterized through Fourier transform infrared spectroscopy, UV-vis spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, high-resolution transmission electron microscopy, and vibrating sample magnetometry. The resulting polyindole/Ni1-x Zn x Fe2O4 (x = 0, 0.5, 1) nanocomposites offer better synergism among the Ni1-x Zn x Fe2O4 nanoparticles and PIN matrix, which significantly improved impedance matching. The best impedance matching of Ni1-x Zn x Fe2O4/polyindole (x = 0, 0.5, 1) nanocomposites was sought out, and the minimum reflection loss of the composites can reach up to -33 dB. The magnetic behavior, complex permittivity, permeability, and microwave absorption properties of polyindole/Ni1-x Zn x Fe2O4 (x = 0, 0.5, 1) nanocomposites have also been studied. The microwave absorbing characteristics of these composites were investigated in the 8-12 GHz range (X band) and explained based on eddy current, natural and exchange resonance, and dielectric relaxation processes. These results provided a new idea to upgrade the performance of conventional microwave-absorbing materials based on polyindole in the future.

2.
ACS Omega ; 3(2): 1710-1717, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-31458489

ABSTRACT

A series of compounds with cobalt doping in the indium site of Ba2In2O5 brownmillerites exhibited excellent oxygen reduction activity under alkaline conditions. Doping (25%) retains the brownmillerite structure with disorder in the O3 site in the two-dimensional alternate layer along the ab plane. Further substitution of cobalt in the indium site leads to the loss of a brownmillerite structure, and the compound attains a perovskite structure. Cobalt-doped samples exhibited far better oxygen reduction reaction (ORR) activity when compared to the parent Ba2In2O5 brownmillerite. Among the series of compounds, BaIn0.25Co0.75O3-δ with the highest Co doping and oxygen vacancies randomly distributed in the lattice exhibited the best ORR activity. BaIn0.25Co0.75O3-δ showed a 40 mV positive shift in the onset potential with better limiting current density and a nearly four-electron-transfer reduction pathway when compared to the parent Ba2In2O5 brownmillerite.

3.
ACS Omega ; 2(11): 8407-8413, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-31457379

ABSTRACT

We demonstrate that synthetically controlled concurrent stabilization of Fe and O vacancy defects on the surface of interbraided nanoscale hematite (Fe2-δO3-v ) renders an interesting surface chemistry which can reduce CO2 to CO at room temperature (RT). Importantly, we realized a highly enhanced output of 410 µmol h-1 g-1 at RT, as compared to that of 10 µmol h-1 g-1 for bulk hematite. It is argued based on the activity degradation under cycling and first principles density functional theory calculations that the excess chemical energy embedded in the defect-stabilized surface is expended in this high-energy conversion process, which leads to progressive filling up of oxygen vacancies.

4.
ACS Appl Mater Interfaces ; 8(50): 34387-34395, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-27998122

ABSTRACT

Oxygen reduction reaction (ORR) is increasingly being studied in oxide systems due to advantages ranging from cost effectiveness to desirable kinetics. Oxygen-deficient oxides like brownmillerites are known to enhance ORR activity by providing oxygen adsorption sites. In parallel, nitrogen and iron doping in carbon materials, and consequent presence of catalytically active complex species like C-Fe-N, is also suggested to be good strategies for designing ORR-active catalysts. A combination of these features in N-doped Fe containing brownmillerite can be envisaged to present synergistic effects to improve the activity. This is conceptualized in this report through enhanced activity of N-doped Ca2Fe2O5 brownmillerite when compared to its oxide parents. N doping is demonstrated by neutron diffraction, UV-vis spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy. Electrical conductivity is also found to be enhanced by N doping, which influences the activity. Electrochemical characterization by cyclic voltammetry, rotating disc electrode, and rotating ring disk electrode (RRDE) indicates an improved oxygen reduction activity in N-doped brownmillerite, with a 10 mV positive shift in the onset potential. RRDE measurements show that the compound exhibits 4-electron reduction pathways with lower H2O2 production in the N-doped system; also, the N-doped sample exhibited better stability. The observations will enable better design of ORR catalysts that are stable and cost-effective.

5.
ACS Appl Mater Interfaces ; 7(5): 3041-9, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25599804

ABSTRACT

Ba2In2O5 brownmillerites in which the In site is progressively doped with Ce exhibit excellent oxygen reduction activity under alkaline conditions. Ce doping leads to structural changes advantageous for the reaction. Twenty-five percent doping retains the ordered structure of brownmillerite with alternate layers of tetrahedra and octahedra, whereas further increase in Ce concentration creates disorder. Structures with disordered oxygen atoms/vacancies are found to be better oxygen reduction reaction catalysts probably aided by isotropic ionic conduction, and Ba2In0.5Ce1.5O5+δ is the most active. This enhanced activity is correlated to the more symmetric Ce site coordination environment in this compound. Stoichiometric perovskite BaCeO3 with the highest concentration of Ce shows very poor activity emphasizing the importance of oxygen vacancies, which facilitate O2 adsorption, in tandem with catalytic sites in oxygen reduction reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...