Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3895, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719832

ABSTRACT

Growth at the shoot apical meristem (SAM) is essential for shoot architecture construction. The phytohormones gibberellins (GA) play a pivotal role in coordinating plant growth, but their role in the SAM remains mostly unknown. Here, we developed a ratiometric GA signaling biosensor by engineering one of the DELLA proteins, to suppress its master regulatory function in GA transcriptional responses while preserving its degradation upon GA sensing. We demonstrate that this degradation-based biosensor accurately reports on cellular changes in GA levels and perception during development. We used this biosensor to map GA signaling activity in the SAM. We show that high GA signaling is found primarily in cells located between organ primordia that are the precursors of internodes. By gain- and loss-of-function approaches, we further demonstrate that GAs regulate cell division plane orientation to establish the typical cellular organization of internodes, thus contributing to internode specification in the SAM.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Biosensing Techniques , Gene Expression Regulation, Plant , Gibberellins , Meristem , Signal Transduction , Gibberellins/metabolism , Meristem/metabolism , Meristem/growth & development , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Growth Regulators/metabolism , Plant Shoots/metabolism , Plant Shoots/growth & development , Plants, Genetically Modified
2.
Curr Biol ; 31(22): 4971-4982.e4, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34614391

ABSTRACT

Nitrate, one of the main nitrogen (N) sources for crops, acts as a nutrient and key signaling molecule coordinating gene expression, metabolism, and various growth processes throughout the plant life cycle. It is widely accepted that nitrate-triggered developmental programs cooperate with hormone synthesis and transport to finely adapt plant architecture to N availability. Here, we report that nitrate, acting through its signaling pathway, promotes growth in Arabidopsis and wheat, in part by modulating the accumulation of gibberellin (GA)-regulated DELLA growth repressors. We show that nitrate reduces the abundance of DELLAs by increasing GA contents through activation of GA metabolism gene expression. Consistently, the growth restraint conferred by nitrate deficiency is partially rescued in global-DELLA mutant that lacks all DELLAs. At the cellular level, we show that nitrate enhances both cell proliferation and elongation in a DELLA-dependent and -independent manner, respectively. Our findings establish a connection between nitrate and GA signaling pathways that allow plants to adapt their growth to nitrate availability.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Gibberellins/metabolism , Nitrates , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Plants/genetics , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...