ABSTRACT
Composites of hydroxyl-terminated PAMAM dendrimers, generation 4.0 (64 peripheral OH groups) containing either Ir, Pt or Rh nanoparticles were synthesized and characterized in solution. Each one of these composites was then immobilized on a glassy carbon electrode (GC) and incorporated as an amperometric detector for dopamine in a high-performance liquid chromatograph (HPLC). Comparison of the analytical performance of the novel electrochemical detectors with a typical UV-vis optical detector for dopamine revealed that the sensitivity of the GC electrode modified with dendrimer-Rh composite is comparable to that of the spectroscopic detector, with a detection limit of 0.15muM, and is linear up to at least 1.0mM (R(2)=0.998). Furthermore, it was found that the electroanalytical approach suffers minimal matrix effects that arise in the analysis of dopamine in samples of urine.