Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(5): e0268380, 2022.
Article in English | MEDLINE | ID: mdl-35560186

ABSTRACT

Unlike spiking neurons which compress continuous inputs into digital signals for transmitting information via action potentials, non-spiking neurons modulate analog signals through graded potential responses. Such neurons have been found in a large variety of nervous tissues in both vertebrate and invertebrate species, and have been proven to play a central role in neuronal information processing. If general and vast efforts have been made for many years to model spiking neurons using conductance-based models (CBMs), very few methods have been developed for non-spiking neurons. When a CBM is built to characterize the neuron behavior, it should be endowed with generalization capabilities (i.e. the ability to predict acceptable neuronal responses to different novel stimuli not used during the model's building). Yet, since CBMs contain a large number of parameters, they may typically suffer from a lack of such a capability. In this paper, we propose a new systematic approach based on multi-objective optimization which builds general non-spiking models with generalization capabilities. The proposed approach only requires macroscopic experimental data from which all the model parameters are simultaneously determined without compromise. Such an approach is applied on three non-spiking neurons of the nematode Caenorhabditis elegans (C. elegans), a well-known model organism in neuroscience that predominantly transmits information through non-spiking signals. These three neurons, arbitrarily labeled by convention as RIM, AIY and AFD, represent, to date, the three possible forms of non-spiking neuronal responses of C. elegans.


Subject(s)
Caenorhabditis elegans , Neurons , Action Potentials/physiology , Animals , Models, Neurological , Neurons/physiology
2.
Int J Neural Syst ; 31(2): 2050063, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33269660

ABSTRACT

The nematode Caenorhabditis elegans (C. elegans) is a well-known model organism in neuroscience. The relative simplicity of its nervous system, made up of few hundred neurons, shares some essential features with more sophisticated nervous systems, including the human one. If we are able to fully characterize the nervous system of this organism, we will be one step closer to understanding the mechanisms underlying the behavior of living things. Following a recently conducted electrophysiological survey on different C. elegans neurons, this paper aims at modeling the three non-spiking RIM, AIY and AFD neurons (arbitrarily named with three upper case letters by convention). To date, they represent the three possible forms of non-spiking neuronal responses of the C. elegans. To achieve this objective, we propose a conductance-based neuron model adapted to the electrophysiological features of each neuron. These features are based on current biological research and a series of in-silico experiments which use differential evolution to fit the model to experimental data. From the obtained results, we formulate a series of biological hypotheses regarding currents involved in the neuron dynamics. These models reproduce experimental data with a high degree of accuracy while being biologically consistent with state-of-the-art research.


Subject(s)
Caenorhabditis elegans , Neurons , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...