Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 10(2)2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33671987

ABSTRACT

Today there is an urgent need to find new ways to satisfy the current and growing food demand and to maintain crop protection and food safety. One of the most promising changes is the replacement of chemical fertilizers with biofertilizers, which include plant root-associated beneficial bacteria. This work describes and shows the use of B. halotolerans SCCPVE07 and R. laguerreae PEPV40 strains as efficient biofertilizers for escarole crops, horticultural species that are widely cultivated. An in silico genome study was performed where coding genes related to plant growth promoting (PGP) mechanisms or different enzymes implicated in the metabolism of phenolic compounds were identified. An efficient bacterial root colonization process was also analyzed through fluorescence microscopy. SCCPVE07 and PEPV40 promote plant development under normal conditions and saline stress. Moreover, inoculated escarole plants showed not only an increase in potassium, iron and magnesium content but also a significant improvement in protocatechuic acid, caffeic acid or kaempferol 3-O-glucuronide plant content. Our results show for the first time the beneficial effects in plant development and the food quality of escarole crops and highlight a potential and hopeful change in the current agricultural system even under saline stress, one of the major non-biological stresses.

2.
Foods ; 9(9)2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32847018

ABSTRACT

Lettuce (Lactuca sativa L.) is a widely consumed horticultural species. Its significance lies in a high polyphenolic compound content, including phenolic acids and flavonols. In this work, we have probed the ability of Rhizobium laguerreae HUTR05 to promote lettuce growth, under in vitro and greenhouse conditions (both non-saline and saline conditions). This strain has shown several in vitro plant growth promotion mechanisms, as well as capacity to colonize lettuce seedlings roots. We have analyzed the effect of the rhizobacterium inoculation on mineral and bioactive compounds in lettuce, under greenhouse conditions, and found a rise in the content of certain phenolic acids and flavonoids, such as derivatives of caffeoyl acid and quercetin. The genome analysis of the strain has shown the presence of genes related to plant growth-promoting rhizobacteria (PGPR) mechanisms, defense from saline stress, and phenolic compound metabolism (such as naringenin-chalcone synthase or phenylalanine aminotransferase).

3.
J Sci Food Agric ; 100(6): 2742-2749, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32003001

ABSTRACT

BACKGROUND: There is an urgent need for a new sustainable way of satisfying the increasing demand for food worldwide. One of the main challenges is replacing chemical fertilizers with biofertilizers, which include plant root-associated beneficial microorganisms. The present study reports, for the first time, the effects of SCCPVE07 bacterial strain with respect to improving not only plant development, but also the nutritional content and bioactive compounds content of Coriandrum sativum L., one of the most economically important crops, even for plant growth under salinity stress. RESULTS: Innoculated coriander plants (C. sativum L.) showed an increase in potassium, carbon, calcium and iron content. A significant improvement in phenolic compounds contents was also observed. The contents of 5-O-caffeoylquinic acid, cinnamic acid, 4-methoxy-cinnamic acid hexoside, K-3-O rutinoside, Q-3-O-rutinoside, Q-3-O-glucoside and Q-3-O-glucuronide were significantly enhanced. Moreover, an efficient bacterial root colonization and a noted growth promotion were demonstrated. Bacterial genome was sequenced and analysed. Gene coding related to Plant growth promotion (PGP) mechanisms and proteins involved in plant defence from salinity or in the metabolism of phenolic compounds, such as quercetin 2,3-dioxygenase and phenolic acid decarboxylase, were identified. CONCLUSION: The results obtained in the present study show, for the first time, the beneficial effects of the inoculation of a bacterial Bacillus halotolerans biofertilizer on coriander crops with respect to increasing the content in bioactive compounds and plant development. © 2020 Society of Chemical Industry.


Subject(s)
Bacillus/growth & development , Coriandrum/growth & development , Coriandrum/metabolism , Phenols/metabolism , Bacillus/genetics , Bacillus/isolation & purification , Coriandrum/microbiology , Fertilizers/microbiology , Phaseolus/microbiology , Plant Development , Root Nodules, Plant/microbiology , Salinity
4.
Microorganisms ; 7(9)2019 Sep 14.
Article in English | MEDLINE | ID: mdl-31540065

ABSTRACT

Plants harbor a diversity of microorganisms constituting the plant microbiome. Many bioinoculants for agricultural crops have been isolated from plants. Nevertheless, plants are an underexplored niche for the isolation of microorganisms with other biotechnological applications. As a part of a collection of canola endophytes, we isolated strain CDVBN77T. Its genome sequence shows not only plant growth-promoting (PGP) mechanisms, but also genetic machinery to produce secondary metabolites, with potential applications in the pharmaceutical industry, and to synthesize hydrolytic enzymes, with potential applications in biomass degradation industries. Phylogenetic analysis of the 16S rRNA gene of strain CDVBN77T shows that it belongs to the genus Microvirga, its closest related species being M. aerophila DSM 21344T (97.64% similarity) and M. flavescens c27j1T (97.50% similarity). It contains ubiquinone 10 as the predominant quinone, C19:0 cycloω8c and summed feature 8 as the major fatty acids, and phosphatidylcholine and phosphatidylethanolamine as the most abundant polar lipids. Its genomic DNA G+C content is 62.3 (mol %). Based on phylogenetic, chemotaxonomic, and phenotypic analyses, we suggest the classification of strain CDVBN77T within a new species of the genus Microvirga and propose the name Microvirga brassicacearum sp. nov. (type strain CDVBN77T = CECT 9905T = LMG 31419T).

5.
Front Microbiol ; 9: 913, 2018.
Article in English | MEDLINE | ID: mdl-29867824

ABSTRACT

Antimicrobial resistance is a worldwide problem that threatens the effectiveness of treatments for microbial infection. Consequently, it is essential to study unexplored niches that can serve for the isolation of new microbial strains able to produce antimicrobial compounds to develop new drugs. Bark beetles live in phloem of host trees and establish symbioses with microorganisms that provide them with nutrients. In addition, some of their associated bacteria play a role in the beetle protection by producing substances that inhibit antagonists. In this study the capacity of several bacterial strains, isolated from the bark beetles Ips acuminatus, Pityophthorus pityographus Cryphalus piceae, and Pityogenes bidentatus, to produce antimicrobial compounds was analyzed. Several isolates exhibited the capacity to inhibit Gram-positive and Gram-negative bacteria, as well as fungi. The genome sequence analysis of three Pseudomonas isolates predicted the presence of several gene clusters implicated in the production of already described antimicrobials and moreover, the low similarity of some of these clusters with those previously described, suggests that they encode new undescribed substances, which may be useful for developing new antimicrobial agents. Moreover, these bacteria appear to have genetic machinery for producing antitumoral and antiviral substances. Finally, the strain IA19T showed to represent a new species of the genus Pseudomonas. The 16S rRNA gene sequence analysis showed that its most closely related species include Pseudomonas lutea, Pseudomonas graminis, Pseudomonas abietaniphila and Pseudomonas alkylphenolica, with 98.6, 98.5 98.4, and 98.4% identity, respectively. MLSA of the housekeeping genes gyrB, rpoB, and rpoD confirmed that strain IA19T clearly separates from its closest related species. Average nucleotide identity between strains IA19T and P. abietaniphila ATCC 700689T, P. graminis DSM 11363T, P. alkylphenolica KL28T and P. lutea DSM 17257T were 85.3, 80.2, 79.0, and 72.1%, respectively. Growth occurs at 4-37°C and pH 6.5-8. Optimal growth occurs at 28°C, pH 7-8 and up to 2.5% NaCl. Respiratory ubiquinones are Q9 (97%) and Q8 (3%). C16:0 and in summed feature 3 are the main fatty acids. Based on genotypic, phenotypic and chemotaxonomic characteristics, the description of Pseudomonas bohemica sp. nov. has been proposed. The type strain is IA19T (=CECT 9403T = LMG 30182T).

6.
Sci Rep ; 8(1): 295, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29321563

ABSTRACT

The growing interest in a healthy lifestyle and in environmental protection is changing habits regarding food consumption and agricultural practices. Good agricultural practice is indispensable, particularly for raw vegetables, and can include the use of plant probiotic bacteria for the purpose of biofertilization. In this work we analysed the probiotic potential of the rhizobial strain PEPV40, identified as Rhizobium laguerreae through the analysis of the recA and atpD genes, on the growth of spinach plants. This strain presents several in vitro plant growth promotion mechanisms, such as phosphate solubilisation and the production of indole acetic acid and siderophores. The strain PEPV40 produces cellulose and forms biofilms on abiotic surfaces. GFP labelling of this strain showed that PEPV40 colonizes the roots of spinach plants, forming microcolonies typical of biofilm initiation. Inoculation with this strain significantly increases several vegetative parameters such as leaf number, size and weight, as well as chlorophyll and nitrogen contents. Therefore, our findings indicate, for the first time, that Rhizobium laguerreae is an excellent plant probiotic, which increases the yield and quality of spinach, a vegetable that is increasingly being consumed raw worldwide.


Subject(s)
Probiotics , Rhizobium/physiology , Spinacia oleracea/growth & development , Spinacia oleracea/microbiology , Biofilms , Cellulose/biosynthesis , Phenotype , Phylogeny , Plant Roots/microbiology , Rhizobium/classification , Seedlings/microbiology
7.
Sci Total Environ ; 619-620: 9-17, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29136536

ABSTRACT

Bark beetles reproduce and overwinter under the bark of trees, and are associated with bacteria that may influence the fitness of their hosts. As regard the aim of this study was to test the metabolic potential of bacterial strains, isolated from the bark beetle species Cryphalus piceae, Ips typographus and Pityophthorus pityophthorus and collected in the Czech Republic from fir, spruce and pine trees, respectively, to degrade plant cell compounds. The bacterial strains were identified as belonging to the genera Curtobacterium, Erwinia, Pantoea, Pseudomonas, Rahnella, Staphylococcus, and Yersinia. Several activities related to the degradation of lignocellulosic materials, such as cellulose, xylan and starch, were found. Moreover, the genomes of three of these strains were sequenced and analyzed, and the presence of the enzymatic machinery required for biomass hydrolysis was discovered. This finding supports the idea that bacteria aid in the provision of nutrients to the beetle from the hydrolysis of tree compounds, results that are relevant for studying the ecological implication of bacterial strains in the bark beetle life cycle. In addition, the activities found in association with the bacterial strains could be useful in biotechnological processes, such as the production of biofuels from biomass, colorant degradation, in the textile industry and for wastewater treatments. Furthermore, the gene sequences of the lignocellulolytic enzymes found within the genomes serve as a basis for future studies regarding the potential application of these bacteria, and their metabolic machinery, in processes such as biomass hydrolysis and bioremediation.


Subject(s)
Bacteria/metabolism , Coleoptera/microbiology , Forests , Lignin/metabolism , Abies , Animals , Czech Republic , Picea , Pinus , Plant Bark
8.
AIMS Microbiol ; 3(3): 483-501, 2017.
Article in English | MEDLINE | ID: mdl-31294172

ABSTRACT

The negative effects on the environment and human health caused by the current farming systems based on the overuse of chemical fertilizers have been reported in many studies. By contrast, bacterial inoculations produce positive effects on yields without causing this type of harm. Hence, during recent years, the commercialization of biofertilizers has been on the increase, and the number of companies and products available are expanding worldwide every year. In addition to the notable enhancement of crop production, many studies have shown how the application of bacteria has positive effects on food quality such as improved vitamin, flavonoid and antioxidant content, among other benefits. This advantage is interesting with respect to food that is consumed raw, such as fruits and many vegetables, as these bioactive molecules are maintained up until the moment the food is consumed. As regards this review focuses on the collection of studies that demonstrate that microorganisms can act as plant probiotics of fruit and horticultural crops, essential types of food that form part of a healthy diet.

SELECTION OF CITATIONS
SEARCH DETAIL
...