Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
World J Microbiol Biotechnol ; 39(9): 249, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37438584

ABSTRACT

Mercury is a highly toxic heavy metal whose emission sources can be both natural and the result of anthropic activity. Its polluting action on soils, and its ability to spread through the atmosphere and aquatic environments, constitutes a threat to human and environmental health; both for its bioaccumulation capacity and for biomagnification through the trophic chain. For this reason, there is a growing scientific and social interest in the reduction of this heavy metal in ecosystems. Bioremediation based on the use of microorganisms and/or plants is postulated as a sustainable alternative to traditional physicochemical methods. The main strategies used for this purpose (individually or in combination) are the volatilization of the contaminant, biosorption, phytoextraction and phytoremediation. All these tools are based on taking advantage of the natural and evolutionary capacity that different organisms have developed to adapt to the presence of various pollutants in the environment. Based on the consulted bibliography, these bioremediation methodologies focus on the use of microorganisms (freely or associated with plants) have been successfully applied in different ecosystems, postulating themselves as a respectful alternative for the future for the recovery of degraded environments. For these reasons there is a growing interest in the scientific community to design and use new techniques in a "One Health" context, which allow interpreting the positive impact of bioremediation. In this sense, the universalization of Omics techniques has allowed to abound in the knowledge of new bacterial taxa, and their biotechnological application. This study pretends to cover the present knowledge about mercury bioremediation techniques. In the same way, some new techniques and perspectives are presented in order to expand the frontiers of future research.


Subject(s)
Environmental Pollutants , Mercury , Humans , Biodegradation, Environmental , Ecosystem , Biotechnology
2.
Biology (Basel) ; 12(6)2023 May 31.
Article in English | MEDLINE | ID: mdl-37372086

ABSTRACT

The emergence of antibiotic resistance (AR) poses a threat to the "One Health" approach. Likewise, mercury (Hg) pollution is a serious environmental and public health problem. Its ability to biomagnify through trophic levels induces numerous pathologies in humans. As well, it is known that Hg-resistance genes and AR genes are co-selected. The use of plant-growth-promoting bacteria (PGPB) can improve plant adaptation, decontamination of toxic compounds and control of AR dispersal. The cenoantibiogram, a technique that allows estimating the minimum inhibitory concentration (MIC) of a microbial community, has been postulated as a tool to effectively evaluate the evolution of a soil. The present study uses the metagenomics of 16S rRNA gene amplicons to understand the distribution of the microbial soil community prior to bacterial inoculation, and the cenoantibiogram technique to evaluate the ability of four PGPB and their consortia to minimize antibiotic resistance in the rhizosphere of Lupinus albus var. Orden Dorado grown in Hg-contaminated soils. Results showed that the addition of A1 strain (Brevibacterium frigoritolerans) and its consortia with A2, B1 and B2 strains reduced the edaphic community´s MIC against cephalosporins, ertapenem and tigecycline. The metagenomic study revealed that the high MIC of non-inoculated soils could be explained by the bacteria which belong to the detected taxa,. showing a high prevalence of Proteobacteria, Cyanobacteria and Actinobacteria.

3.
Front Microbiol ; 13: 891882, 2022.
Article in English | MEDLINE | ID: mdl-35814683

ABSTRACT

Heavy metal contamination of soils is a large-scale environmental problem. It leads to significant disqualification of the territory, in addition to being a source of the potential risk to human health. The exposure of plants to mercury (Hg) generates responses in its growth and their oxidative metabolism. The impact of increasing concentrations of Hg on the development of Lupinus albus var. Orden Dorado seedlings has been studied, as well as the plant's response to the maximum concentration of Hg that allows its development (16 µg ml-1). The result shows that only the inoculum with plant growth promoting bacteria (PGPB) allows the biometric development of the seedling (root length, weight, and number of secondary roots) and prevents the toxic effects of the heavy metal from aborting the seedlings. Specifically, treatments with strains 11, 20 (Bacillus toyonensis), 48 (not determined), and 76 (Pseudomonas syringae) are interesting candidates for further PGPB-assisted phytoremediation trials as they promote root biomass development, through their PGPB activities. The plant antioxidant response has been analyzed by quantifying the catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR) enzyme activity in the root, under 16 µg ml-1 of HgCl2 and different PGPB treatments. Results show that, although Hg stress generally induces enzyme activity, strains 31 and 69I (Pseudomonas corrugata) and 18 and 43 (Bacillus toyonensis) can keep SOD and APX levels close to those found in control without Hg (p < 0.01). Strain 18 also shows a significant reduction of GR to control levels without Hg. The present work demonstrates the benefit of PGPB treatments in situations of high Hg stress. These findings may be a good starting point to justify the role of PGPB naturally isolated from bulk soil and the rhizosphere of plants subjected to high Hg pressure in plant tolerance to such abiotic stress conditions. More studies will be needed to discover the molecular mechanisms behind the phytoprotective role of the strains with the best results, to understand the complex plant-microorganism relationships and to find effective and lasting symbioses useful in bioremediation processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...