Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Infect Dis ; 122: 930-935, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35840097

ABSTRACT

OBJECTIVES: Qualitative real-time polymerase chain reaction tests are not designed to provide quantitative or semiquantitative results because cycle threshold (Ct) values are not normalized to standardized controls of known concentration. The aim of this study was to characterize SARS-CoV-2 viral loads based on Ct values, using the QIAstat-Dx® Respiratory SARS-CoV-2 Panel. METHODS: Different lineages of SARS-CoV-2 clinical samples and the World Health Organization international standard were used to assess the linearity of the QIAstat-Dx Respiratory SARS-CoV-2 Panel. Limit of detection for the different lineages was characterized. RESULTS: Comparable efficiencies and linearity for all samples resulted in R2 ≥0.99, covering a dynamic range of 1,000,000-100 copies/mL for the SARS-CoV-2 assay, showing linear correlation between Ct values and viral load down to 300 copies/mL. CONCLUSION: The SARS-CoV-2 Ct values provided by the QIAstat-Dx® Respiratory SARS-CoV-2 Panel could be used as a surrogate for viral load given the linear correlation between Ct values and viral concentration down to limit of detection. This panel allows to obtain reproducible Ct values for SARS-CoV-2 ribonucleic acid downstream of the sample collection, reducing the sample-to-Ct workflow variability. Ct values can help provide a reliable assessment and comparison of viral loads in patients when tested with the QIAstat-Dx Respiratory SARS-CoV-2 Panel.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Respiratory System , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...