Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Biol Sex Differ ; 14(1): 59, 2023 09 16.
Article in English | MEDLINE | ID: mdl-37716988

ABSTRACT

BACKGROUND: The amyloid-ß (Aß) cascade is one of the most studied theories linked to AD. In multiple models, Aß accumulation and dyshomeostasis have shown a key role in AD onset, leading to excitatory/inhibitory imbalance, the impairments of synaptic plasticity and oscillatory activity, and memory deficits. Despite the higher prevalence of Alzheimer's disease (AD) in women compared to men, the possible sex difference is scarcely explored and the information from amyloidosis transgenic mice models is contradictory. Thus, given the lack of data regarding the early stages of amyloidosis in female mice, the aim of this study was to systematically characterize the effect of an intracerebroventricular (icv.) injection of Aß1-42 on hippocampal-dependent memory, and on associated activity-dependent synaptic plasticity in the hippocampal CA1-CA3 synapse, in both male and female mice. METHODS: To do so, we evaluated long term potentiation (LTP) with ex vivo electrophysiological recordings as well as encoding and retrieval of spatial (working, short- and long-term) and exploratory habituation memories using Barnes maze and object location, or open field habituation tasks, respectively. RESULTS: Aß1-42 administration impaired all forms of memory evaluated in this work, regardless of sex. This effect was displayed in a long-lasting manner (up to 17 days post-injection). LTP was inhibited at a postsynaptic level, both in males and females, and a long-term depression (LTD) was induced for the same prolonged period, which could underlie memory deficits. CONCLUSIONS: In conclusion, our results provide further evidence on the shifting of LTP/LTD threshold due to a single icv. Aß1-42 injection, which underly cognitive deficits in the early stages of AD. These long-lasting cognitive and functional alterations in males and females validate this model for the study of early amyloidosis in both sexes, thus offering a solid alternative to the inconsistence of amyloidosis transgenic mice models.


This study focuses on investigating how amyloid-ß (Aß), a key toxic protein in Alzheimer's disease (AD), impacts memory and functioning of the synapses in both male and female mice.Our primary objective was to comprehensively understand the impact of Aß1­42, a specific form of Aß, when introduced into the brain's ventricles, focusing on memory processes associated with the hippocampus, a brain region vital for learning and memory.Prior research established Aß's significance in AD and memory decline. However, despite the higher prevalence of AD in females, the connection between Aß, memory, and sex differences required further exploration. Furthermore, findings from experiments utilizing Aß transgenic mice have offered conflicting outcomes. Here, by administering Aß1­42 to male and female mice, we systematically assessed memory using cognitive tasks. Results were consistent: memory deficits were evident in both sexes, persisting for up to 17 days post-injection.Delving deeper, we explored alterations in synaptic plasticity, a cornerstone of learning and memory. Our investigations unveiled disruptions in long-term potentiation (LTP) and long-term depression (LTD)­essential synaptic processes­in both male and female mice subjected to Aß1­42 injection.These intriguing findings underscore Aß1­42's lasting influence on memory and synaptic function, emphasizing its role in early AD-related cognitive decline. Additionally, our study highlights the potential of this experimental model to investigate early AD across sex differences, offering a promising alternative to the existing array Aß transgenic mouse models and addressing the need for a more consistent investigative framework.


Subject(s)
Alzheimer Disease , Amyloidosis , Female , Male , Humans , Mice , Animals , Neuronal Plasticity , Mice, Transgenic , Memory Disorders
3.
J Neurochem ; 153(3): 362-376, 2020 05.
Article in English | MEDLINE | ID: mdl-31875959

ABSTRACT

Hippocampal synaptic plasticity disruption by amyloid-ß (Aß) peptides + thought to be responsible for learning and memory impairments in Alzheimer's disease (AD) early stage. Failures in neuronal excitability maintenance seems to be an underlying mechanism. G-protein-gated inwardly rectifying potassium (GirK) channels control neural excitability by hyperpolarization in response to many G-protein-coupled receptors activation. Here, in early in vitro and in vivo amyloidosis mouse models, we study whether GirK channels take part of the hippocampal synaptic plasticity impairments generated by Aß1-42 . In vitro electrophysiological recordings from slices showed that Aß1-42 alters synaptic plasticity by switching high-frequency stimulation (HFS) induced long-term potentiation (LTP) to long-term depression (LTD), which led to in vivo hippocampal-dependent memory deficits. Remarkably, selective pharmacological activation of GirK channels with ML297 rescued both HFS-induced LTP and habituation memory from Aß1-42 action. Moreover, when GirK channels were specifically blocked by Tertiapin-Q, their activation with ML297 failed to rescue LTP from the HFS-dependent LTD induced by Aß1-42 . On the other hand, the molecular analysis of the recorded slices by western blot showed that the expression of GIRK1/2 subunits, which form the prototypical GirK channel in the hippocampus, was not significantly regulated by Aß1-42 . However, immunohistochemical examination of our in vivo amyloidosis model showed Aß1-42 to down-regulate hippocampal GIRK1 subunit expression. Together, our results describe an Aß-mediated deleterious synaptic mechanism that modifies the induction threshold for hippocampal LTP/LTD and underlies memory alterations observed in amyloidosis models. In this scenario, GirK activation assures memory formation by preventing the transformation of HFS-induced LTP into LTD.


Subject(s)
Amyloidosis/metabolism , Excitatory Postsynaptic Potentials/physiology , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Hippocampus/metabolism , Long-Term Synaptic Depression/physiology , Memory Disorders/metabolism , Amyloid beta-Peptides/toxicity , Amyloidosis/chemically induced , Animals , Excitatory Postsynaptic Potentials/drug effects , Hippocampus/drug effects , Long-Term Synaptic Depression/drug effects , Male , Memory Disorders/chemically induced , Mice , Mice, Inbred C57BL , Organ Culture Techniques , Peptide Fragments/toxicity , Potassium Channels, Inwardly Rectifying/metabolism , Receptors, G-Protein-Coupled/metabolism
4.
Antioxidants (Basel) ; 8(8)2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31398872

ABSTRACT

Pentacyclic triterpenes and phenols are two types of bioactive molecules found in olive trees that have important activities related to health and disease prevention. Triterpenes, including oleanolic acid, maslinic acid, erythrodiol and uvaol, show antitumoral activities, and phenols such as oleuropein, tyrosol, and hydroxytyrosol are natural antioxidants. The concentration of these metabolites is considered a marker of the quality of olives and olive oil. In recent years, a lack of rain water has caused important economic losses relating to olive trees grown in Jaén, Spain. In this work, we investigated the effect of water stress by drought on the concentration of pentacyclic triterpenes and phenols in the fruits, leaves, stems and roots of cv. Picual olive trees, by comparing the concentration found in water-stressed versus irrigated plants. We used HPLC-UV/Vis and HPLC-MS to identify and determine the concentration of each individual compound. Our results showed that important changes in the concentration of these compounds are produced in response to water stress in different organs. The total content of most of these compounds in the fruits was significantly reduced, affecting their quality and production.

SELECTION OF CITATIONS
SEARCH DETAIL
...