Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 127(19): 193601, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34797131

ABSTRACT

We study the effect of optical polarization squeezing on the performance of a sensitive, quantum-noise-limited optically pumped magnetometer. We use Bell-Bloom (BB) optical pumping to excite a ^{87}Rb vapor containing 8.2×10^{12} atoms/cm^{3} and Faraday rotation to detect spin precession. The sub-pT/sqrt[Hz] sensitivity is limited by spin projection noise (photon shot noise) at low (high) frequencies. Probe polarization squeezing both improves high-frequency sensitivity and increases measurement bandwidth, with no loss of sensitivity at any frequency, a direct demonstration of the evasion of measurement backaction noise. We provide a model for the quantum noise dynamics of the BB magnetometer, including spin projection noise, probe polarization noise, and measurement backaction effects. The theory shows how polarization squeezing reduces optical noise, while measurement backaction due to the accompanying ellipticity antisqueezing is shunted into the unmeasured spin component. The method is compatible with high-density and multipass techniques that reach extreme sensitivity.

2.
Rev Sci Instrum ; 85(4): 045124, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24784676

ABSTRACT

We demonstrate an optically pumped (87)Rb magnetometer in a microfabricated vapor cell based on a zero-field dispersive resonance generated by optical modulation of the (87)Rb ground state energy levels. The magnetometer is operated in the spin-exchange relaxation-free regime where high magnetic field sensitivities can be achieved. This device can be useful in applications requiring array-based magnetometers where radio frequency magnetic fields can induce cross-talk among adjacent sensors or affect the source of the magnetic field being measured.

3.
J Biomed Biotechnol ; 2011: 951043, 2011.
Article in English | MEDLINE | ID: mdl-21716674

ABSTRACT

There is an increased concern about the health effects that air-suspended particles have on human health which have been dissected in animal models. Using CD-1 mouse, we explore the effects that vanadium inhalation produce in different tissues and organs. Our findings support the systemic effects of air pollution. In this paper, we describe our findings in different organs in our conditions and contrast our results with the literature.


Subject(s)
Air Pollution/adverse effects , Particulate Matter/toxicity , Vanadium/toxicity , Animals , Bone and Bones/drug effects , Bone and Bones/pathology , Central Nervous System/drug effects , Central Nervous System/pathology , DNA Breaks, Single-Stranded , Humans , Immune System/pathology , Inhalation , Liver/drug effects , Liver/pathology , Lung/drug effects , Lung/pathology , Lymph Nodes/drug effects , Lymph Nodes/pathology , Mice , Models, Animal , Reactive Oxygen Species/metabolism , Reproduction/drug effects , Spleen/drug effects , Spleen/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...